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Overview 
FoldAffinity has 9 panels (Figure 1). Panels 1-3 contain the necessary steps to 
analyze user data using the isothermal approach. The Panel Tm fitting can be used 
to estimate binding affinities directly from the observed melting temperatures. The 
Simulate data Panel can be used before doing an experiment to analyze the 
expected change in the signal depending on the binding affinity and the protein and 
ligand concentrations. 
 

 
Figure 1. FoldAffinity online tool panels.   

1. Load input 

1.1. Input file (raw data) 
 
FoldAffinity accepts as input several kind of files:  
 

A)​ The xlsx file (processed) generated by the Nanotemper Prometheus 
machine that has one sheet called 'Overview' with a column called 'Sample 
ID' with the names of the samples (ligand concentration) (Figure 2), and four 

 



sheets called 'Ratio', '330nm', '350nm' and 'Scattering'. The first column of the 
signal sheet ('Ratio', '330nm', '350nm', 'Scattering') should be called 'Time [s]'. 
The second column should have the temperature data and all subsequent 
columns store the fluorescence data (Figure 3). The order of the fluorescence 
columns should match the order of the 'Sample ID' column in the 'Overview' 
sheet.  
 

 
Figure 2. Example of the ‘SampleID’ column in the ‘Overview’ sheet required by FoldAffinity 
to load the Nanotemper spreadsheet input file. 

 

 
Figure 3. Example of the ‘Ratio’ sheet required by FoldAffinity to load the Nanotemper 
spreadsheet input file. 
 

B)​ The xls file generated by the ThermoFluor Assay in a qPCR machine. One 
sheet called 'RFU' where the first row has the sample positions (header), the 

 



first column has the temperature data and all subsequent columns store the 
fluorescence data (Figure 4).  
 

 
Figure 4. Example of the ‘RFU’ sheet required by FoldAffinity to load ThermoFluor data. 
 

C)​ The xlsx file generated by the Prometheus Panta instrument. This file has 
one sheet called ‘Overview’ with a column called 'Sample ID' with the names 
of the samples (Figure 2), and one sheet called ‘Data Export’ where all the 
data is stored (Figure 5). The ‘Data Export’ sheet columns should have the 
following order: 
 
Temperature capillary 1 ; Ratio capillary 1 ; … ; Temperature capillary 1 ; 350 
nm capillary 1 ; … ; Temperature capillary 1 ; 330 nm capillary 1 ; … ; 
Temperature capillary 1 ; scattering capillary 1 ; … ; Temperature capillary 2 ; 
Ratio capillary 2; … ;  Temperature capillary n ; Ratio capillary n. 

 
​ Columns whose names include "Derivative" ​​are not read. 
 

 
Figure 5. Example of the ‘Data Export’ sheet required by FoldAffinity to load the Prometheus 
Panta spreadsheet input file. 
 

D)​ The text file (.txt) generated by the QuantStudio™ 3 System instrument 
(Figure 6). Comments should be at the beginning of the file and start with ‘*’. 
The header is the first line with more than 6 words, i.e. ‘Well’, ‘Well Position’, 
… , ‘Target Name’. The column number 2 has the sample IDs. The columns 
number 4 and 5 have the signal and temperature data.  

 



 

 
Figure 6. Example of the input file required by FoldAffinity to load the QuantStudio™ 3 
System instrument  data. 
 

E)​ The xlsx file generated by the Nanotemper Prometheus Tycho instrument. 
This file has one sheet called ‘Results’ (with 6 columns named '#', 'Capillary 
label',..., 'Sample Brightness') (Figure 7), and one sheet called 'Profiles_raw' 
where the fluorescence data is stored. 

 

 
Figure 7. Example of the ‘Results’ sheet required by FoldAffinity to retrieve the number of 
samples. This example file was generated by the Nanotemper Prometheus Tycho 
instrument. 
 

The ‘Profiles_raw’ sheet columns should have the following structure (Figure 
8): 

 
​ One row with information about the recorded signal, e.g., ‘Ratio 350 nm / 330 
nm’,  ‘Brightness @ 330 nm’, ‘Brightness @ 350 nm’. 

One row with the capillary numbers. 
One row with the time, temperature and sample names. 
The remaining rows store the data. 

 

 

 



Figure 8. Example of the ‘Profiles_raw’ sheet required by FoldAffinity to load the 
temperature and signal data. This example file was generated by the Nanotemper 
Prometheus Tycho instrument. 

F) The text file (.txt) generated by Agilent's MX3005P qPCR instrument. The 
data format is the following: 

 
Line 1:​ Header 
Line 2:​ Segment  2 Plateau  1 Well  1 
Line 3: ​ ROX 
Line 4:​ 1          1706       25.0 
Line 5:​ 2          2581       25.8 
Line n:​ 70​       4845​  93.7  
Line n+1:​ Segment  2 Plateau  1 Well  2 
Line n+2:​ ROX 
Line n+3:​ 1​       1707​  25.0 
 
The data of each well is separated by rows containing the sentence ‘Segment  No 
Plateau  No Well  No’. The rows after the line with ‘ROX’ contain the fluorescence 
and temperature data (second and third columns respectively).  

1.2. Median filter (smoothing) 
 
The median filter consists of calculating the median value of a temperature rolling 
window. 

1.3. Melting temperature (Tm) estimation using the first derivative 
 
A non-model approach to estimate the melting temperature involves estimating the 
maximum or the minimum of the first derivative, depending on the way the signal 
changes with the temperature. In FoldAffinity, the Tm values are estimated as 
follows. First, the median value of the first derivative in the interval 

and [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 6; 𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 11]
 is calculated. Then, we obtain [𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 11; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 6]

the mean of those two median values and add it (if it positive), or subtract it (if it is 
negative), to the first derivative in the interval 

. This is done to shift the derivative [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 1; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 1]
baseline. Last, if the absolute value of the minimum (of the derivative) is higher than 
the absolute value of the maximum, we use the minimum to estimate the Tm. 
Otherwise, we use the maximum. If many curves are present, we always use the 
same option. 
 

 



To compute the derivative we use the Savitzky-Golay function as implemented in 
numpy (scipy.signal.savgol_filter — SciPy v1.6.1 Reference Guide) with a polynomial 
degree 4 and window size of 10 degrees. 

2. Fit fluorescence 

2.1. Model 
 
Each fluorescence versus temperature curve is fitted with a two-state folding model 
where the signal is the sum of the fluorescence of the folded and unfolded states.  
 

    ​ ​ (1) 𝐹(𝑇) = 𝐹
𝑜𝑏𝑠

(𝐼𝐹 + 𝑇 * 𝑆𝐹) + 𝑈(𝐼𝑈 + 𝑇 * 𝑆𝑈)

 
where  and U are respectively the observed folded and unfolded fractions, and 𝐹

𝑜𝑏𝑠
𝐼𝐹

are the intercept of the folded and unfolded fractions, and  are the slope of 𝐼𝑈 𝐼𝑈 𝑆𝑈
the folded and unfolded fractions, and 
 

 ​​ ​ ​ (2) 𝐹
𝑜𝑏𝑠

(𝐾
𝑢,𝑜𝑏𝑠

) = 1 / (1 + 𝐾
𝑢,𝑜𝑏𝑠

)

​ ​ ​ (3) 𝑈(𝐾
𝑢,𝑜𝑏𝑠

) = 𝐾
𝑢,𝑜𝑏𝑠

 / (1 + 𝐾
𝑢,𝑜𝑏𝑠

)

 
with  
 

 ​​ ​ ​ (4) 𝐾
𝑢,𝑜𝑏𝑠

 (𝑇) = 𝑒
(−∆𝐺

𝑜𝑏𝑠
 / 𝑅𝑇)

= 𝑈
𝐹+𝐹𝐿

 
 ∆𝐺

𝑜𝑏𝑠
 (𝑇) = ∆𝐻

𝑜𝑏𝑠
* (1 − 𝑇

𝑇
𝑚,𝑜𝑏𝑠

+273.15 ) +

​ (5) − 𝐶
𝑝

* (𝑇
𝑚,𝑜𝑏𝑠

+ 273. 15 −  𝑇 +  𝑇 *  𝑙𝑜𝑔( 𝑇
𝑇

𝑚,𝑜𝑏𝑠
+273.15 ))

 
where R is the gas constant, is the free energy of unfolding, is the ∆𝐺

𝑜𝑏𝑠
 (𝑇) 𝑈

equilibrium concentration of the unfolded species, F is the equilibrium concentration 
of the folded unbound species, is the equilibrium concentration of the folded 𝐹𝐿
bound species,  is the observed melting temperature, is the enthalpy of 𝑇

𝑚,𝑜𝑏𝑠
∆𝐻

𝑜𝑏𝑠

unfolding, and is the heat capacity at a constant temperature. 𝐶
𝑝

 
Equation 18 is thermodynamically correct only when there is no ligand involved (

). When there is ligand present, . In spite of 𝐾
𝑢,𝑜𝑏𝑠

= 𝐾
𝑢

= 𝑈 / 𝐹 𝐾𝑢
𝑜𝑏𝑠

= 𝑈 / (𝐹 + 𝐹𝐿)

 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html


this, Bai et al. and Niebling et al. have proven that this equation allows a correct 
estimation of the equilibrium dissociation constant.1,2 

2.2.  Curve fitting 
 
Once the data is loaded in FoldAffinity, the first and last 10 degrees of each 
fluorescence melting curve is fitted using the equation of a line to obtain initial values 
of , ,  and parameters. 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐹𝑜𝑙𝑑𝑒𝑑 𝑆𝑙𝑜𝑝𝑒𝐹𝑜𝑙𝑑𝑒𝑑 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑 𝑆𝑙𝑜𝑝𝑒𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑
Then, each curve is fitted individually using the Levenberg Marquardt (damped 
least-squares) algorithm to estimate , and . These values can be used ∆𝐻

𝑜𝑏𝑠
𝑇

𝑚,𝑜𝑏𝑠
𝐶

𝑝

directly or the whole data can be fitted again to force shared values of the slope 
parameters and / or   value.  𝐶

𝑝

2.3. Fitting errors 
 
The standard deviation of all fitted parameters is computed using the square root of 
diagonal values from the fit parameter covariance matrix reported by scipy.curve_fit 
function. These values are an approximation (underestimation) of the real errors.  

3. Fit unfolded fraction  

3.1. Models 
 
The models implemented in FoldAffinity are based on the coupling between ligand 
binding and protein folding and require that the ligand is completely soluble at all the 
measured concentrations and temperatures.   
 
One binding site 
 
At a fixed temperature, if we assume that the ligand can only bound the folded state, 
a one binding site system can be described with the following reactions. 
 

​ ​ (6) 𝑈 + 𝐿 ⬌ 𝐹 + 𝐿 ⬌ 𝐹𝐿
 
where , ,  and  are respectively the unfolded state, folded state, bound folded 𝑈 𝐹 𝐹𝐿 𝐿
state and ligand. The associated equations and principle of mass conservation are 
 

2 Niebling, S., Burastero, O., Bürgi, J., Günther, C., Defelipe, L. A., Sander, S., ... & García-Alai, M. 
(2021). FoldAffinity: binding affinities from nDSF experiments. Scientific reports, 11(1), 1-17. 

1 Bai, N., Roder, H., Dickson, A., & Karanicolas, J. (2019). Isothermal analysis of ThermoFluor data 
can readily provide quantitative binding affinities. Scientific reports, 9(1), 1-15. 
 

 



         ​ ​ ​ (7) 𝐾
𝑢
 =  𝑈 / 𝐹

​ ​ ​ (8) 𝐾
𝑑
 =  (𝐹 * 𝐿) / 𝐹𝐿

​ ​ ​ (9) 𝑃
0
 =  𝑈 + 𝐹 + 𝐹𝐿

​         ​ ​ (10) 𝐿
0
 =  𝐿 + 𝐹𝐿

 
where  and  are respectively the unfolding and the equilibrium  dissociation 𝐾

𝑢
𝐾

𝑑

constant, and are respectively the total protein and total ligand concentration. 𝑃
0

𝐿
0

 
If we knew and , FL could be obtained by solving  𝐾

𝑢
𝐾

𝑑

 

​        ​ ​ (11) 0 = 𝐹𝐿2 + 𝑝𝐹𝐿 + 𝑞
 ​ (12) 𝑝 = 𝑃

0
 / (𝐾

𝑢
 +  1) + 𝐿

0
+ 𝐾

𝑑

 ​           (13) 𝑞 = 𝑃
0
 𝐿

0
 / (𝐾

𝑢
 +  1)

 
And then , and could be calculated to determine the unfolded fraction (𝑈 𝐹

). Therefore, at a fixed temperature, the unfolded fraction versus ligand 𝑈 / (𝐹 + 𝐹𝐿)
concentration curve allows to estimate and .  𝐾

𝑢
𝐾

𝑑

 
Two binding sites (microscopic constants) 
 
The system is described by the reactions 
 

​                    ​ (14) 𝑈 + 2𝐿 ⬌ 𝐹 + 2𝐿
 ​ ​ ​ (15) 𝐹 + 2𝐿 ⬌ 𝐹𝐿 + 𝐿
​                    ​ (16) 𝐹 + 2𝐿 ⬌ 𝐿𝐹 + 𝐿

                        ​ (17) 𝐹𝐿 + 𝐿 ⬌ 𝐿𝐹𝐿
 ​                     ​ (18) 𝐿𝐹 + 𝐿 ⬌ 𝐿𝐹𝐿

 
where F is the free folded protein, FL and LF are the two possible protein-ligand 
complexes and LFL is the protein with two ligands. F, FL, LF and LFL depend on the 
Kds, total ligand concentration  and free ligand concentration in the following 𝐿

0
𝐿

𝑓𝑟𝑒𝑒

way 
 

​ ​ (19) 𝐹 = 𝐾
𝑑,1

* 𝐾
𝑑,2

* (𝐿
0

− 𝐿
𝑓𝑟𝑒𝑒

) / (𝐾
𝑑,1

+ 𝐾
𝑑,2

+ 2𝐿
𝑓𝑟𝑒𝑒

) / 𝐿
𝑓𝑟𝑒𝑒

​ ​ ​ ​ ​ ​ ​ (20) 𝐹𝐿 = 𝐿
𝑓𝑟𝑒𝑒

* 𝐹 / 𝐾
𝑑,2

​ ​ ​ ​ ​ ​ ​ (21) 𝐹𝐿 = 𝐿
𝑓𝑟𝑒𝑒

* 𝐹 / 𝐾
𝑑,1

​ ​ ​ ​ ​ ​ ​ (22) 𝐿𝐹𝐿 = 𝐿
𝑓𝑟𝑒𝑒

* 𝐿𝐹 / 𝐾
𝑑,2

 



 
We can obtain the value of  by solving   𝐿

𝑓𝑟𝑒𝑒

 

​ ​ ​ ​ ​ ​ (23) 𝑋3 + 𝑝𝑋2 + 𝑞𝑋 + 𝑟 = 0
 
where 
 

 ​​ ​ ​ ​ (24) 𝑝 = 𝐾
𝑑,1

+ 𝐾
𝑑,2

 +  (2 * 𝑃
0

− 𝐿
0
)

​ (25) 𝑞 =  (𝑃
0

− 𝐿
0
) * (𝐾

𝑑,1
+ 𝐾

𝑑,2
) + 𝐾

𝑑,1
* 𝐾

𝑑,2
* (1 + 𝐾

𝑢
)

​ ​ ​ ​ ​ (26) 𝑟 =− 𝐿
0

* 𝐾
𝑑,1

* 𝐾
𝑑,2

* (1 + 𝐾
𝑢
)

 
For simplicity, for now we only provide the option to fit this model using .  𝐾

𝑑,1
= 𝐾

𝑑,2

3.2. Curve fitting 
 
The unfolded fraction versus ligand concentration curve is fitted using the Levenberg 
Marquardt (damped least-squares) algorithm to estimate  (or  and at 𝐾

𝑑
𝐾

𝑑,1
,  𝐾

𝑑,2
) 𝐾

𝑢

the chosen temperature. 

3.3. Fitting errors 
 
The standard deviation of all fitted parameters is computed using the square root of 
diagonal values from the fit parameter covariance matrix.  
 
When fitting the '1:1' or the '1:2' (one Kd) binding models, we also provide the 
marginal asymmetric confidence interval. It has been shown that this approach is 
more robust in estimating uncertainties, so we recommend reporting this result.3 
 
Briefly, the lower and upper bounds of the 95 % confidence interval are given by the 
values of Kd satisfying  
 

​​ ​ ​ ​ (27) 𝑅𝑆𝑆(𝐾
𝑑
) = 𝑅𝑆𝑆

0
(1 + 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑉𝑎𝑙𝑢𝑒

𝑛−𝑝 )

 
where RSS0 is the residual sum of squares using the best estimates for all the 
parameters,  is the residual sum of squares using a fixed value of Kd (fitting 𝑅𝑆𝑆(𝐾

𝑑
)

again the other parameters),  n is the number of data points, p is the number of 

3 Paketurytė, Vaida, et al. "Uncertainty in protein–ligand binding constants: asymmetric confidence 
intervals versus standard errors." European Biophysics Journal 50.3 (2021): 661-670. 

 



parameters,  and critcialValue is the critical value of the Fisher-Snedecor distribution 
with n - p and 1 degress of freedom and a confidence level 95 %. 

4. Alternative Tm fitting: Binding affinity from the observed 
melting temperatures 

4.1 Model 
 
If we suppose that the enthalpy ( ) and entropy ( ) of unfolding, and the Kd do not ∆𝐻 ∆𝑆
change significantly in the vicinity of the melting temperature  of the protein, the 𝑇

𝑚

free energy of unfolding for a one binding-site system can be expressed as: 
 

   ​ ​ ​ (28) ∆𝐺(𝑇
𝑚,𝑂𝑏𝑠

) = ∆𝐻 − 𝑇
𝑚,𝑂𝑏𝑠

∆𝑆 + 𝑅𝑇
𝑚,𝑂𝑏𝑠

* 𝑙𝑛(1 +
𝐿

𝑓𝑟𝑒𝑒

𝐾𝑑 )

 
and for a two-binding sites system, 
 

 ​ (29) ∆𝐺(𝑇
𝑚,𝑂𝑏𝑠

) = ∆𝐻 − 𝑇
𝑚,𝑂𝑏𝑠

∆𝑆 + 𝑅𝑇
𝑚,𝑂𝑏𝑠

* 𝑙𝑛(1 + 𝐿
𝑓𝑟𝑒𝑒

*
𝐿

𝑓𝑟𝑒𝑒
+𝐾

𝑑,1
+𝐾

𝑑,2

𝐾
𝑑,1

*𝐾
𝑑,2

)

 
Taking into account that at the , without ligand, we have the following equality: 𝑇

𝑚

 
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (30) ∆𝐻 = 𝑇

𝑚
∆𝑆

 
If we approximate the free ligand concentration using the total ligand concentration 
we can fit the observed melting temperatures by using 
 

 ​ ​ ​ ​ ​ ​ (31) 𝑇
𝑚,𝑂𝑏𝑠

= 𝑇
𝑚

(1 −
𝑅𝑇

𝑚
𝑙𝑛(1+𝐿

𝑓𝑟𝑒𝑒
 / 𝐾

𝑑
)

∆𝐻  )
−1

 
in the case of one-binding site, or  

 

 ​ ​ ​ (32) 𝑇
𝑚,𝑂𝑏𝑠

= 𝑇
𝑚

(1 − ∆𝐻−1(𝑅𝑇
𝑚

𝑙𝑛(1 + 𝐿
𝑓𝑟𝑒𝑒

*
𝐿

𝑓𝑟𝑒𝑒
+𝐾

𝑑,1
+𝐾

𝑑,2

𝐾
𝑑,1

*𝐾
𝑑,2

)))
−1

 
in case of two-binding sites. 

4.2. Curve fitting 
 

 



The observed melting temperature calculated from the first derivative as a function of 
the total ligand concentration is fitted using the Levenberg Marquardt (damped 
least-squares) algorithm to estimate  and  (or . ∆𝐻 𝐾

𝑑
𝐾

𝑑,1
,  𝐾

𝑑,2
)

4.3. Fitting errors 
 
The standard error of all fitted parameters is based on the covariance matrix (using 
the R programming language package minpack.lm).  
 
When fitting the '1:1' or the '1:2' (one Kd) binding models, we also provide the 
marginal asymmetric confidence interval (See Section 3.3.).  
 

Contact details 
For further assistance, please contact us: 
 
​ 📧 spc@embl-hamburg.de 
​ 📌EMBL (c/o DESY), Notkestrasse 85, Build. 25a, 22607 Hamburg, Germany 

 

 



Packages 
 
FoldAffinity is possible thanks to:  
 
R language: R Core Team (2020). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/. 
 
R package shiny:   Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan 
McPherson (2020). shiny: Web Application Framework for R. R package version 
1.4.0.2. https://CRAN.R-project.org/package=shiny 
 
R package viridis: Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib'. 
R package version 0.5.1. https://CRAN.R-project.org/package=viridis 
 
R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse. Journal of 
Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686 
 
R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical Math 
Functions. R package version 2.2.9. https://CRAN.R-project.org/package=pracma 
 
R package shinydashboard:   Winston Chang and Barbara Borges Ribeiro (2018). 
shinydashboard: Create Dashboards with 'Shiny'. R package version 0.7.1. 
https://CRAN.R-project.org/package=shinydashboard 
 
R package ggplot2:   H. Wickham. ggplot2: Elegant Graphics for Data Analysis. 
Springer-Verlag New York, 2016. 
 
R package xlsx:   Adrian Dragulescu and Cole Arendt (2020). xlsx: Read, Write, 
Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.3. 
https://CRAN.R-project.org/package=xlsx 
 
R package reshape2:   Hadley Wickham (2007). Reshaping Data with the reshape 
Package. Journal of Statistical Software, 21(12), 1-20. URL 
http://www.jstatsoft.org/v21/i12/. 
 
R package tippy:   John Coene (2018). tippy: Add Tooltips to 'R markdown' 
Documents or 'Shiny' Apps. R package version 0.0.1. 
https://CRAN.R-project.org/package=tippy 
 
R package shinyalert:   Pretty Popup Messages (Modals) in 'Shiny'. R package 
version 1.1. https://CRAN.R-project.org/package=shinyalert 
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