

eSPC, an Online Data Analysis
Platform for Molecular

Biophysics

FoldAffinity 1.0 User
Documentation

February 2026

Table of Contents

1. Load input

1.1. Input file (raw data)

1.2. Median filter (smoothing)

1.3. Melting temperature (Tm) estimation using the first derivative

2. Fit fluorescence

2.1. Model

2.2. Curve fitting

2.3. Fitting errors

3. Fit unfolded fraction

3.1. Models

3.2. Curve fitting

3.3. Fitting errors

4. Alternative Tm fitting: Binding affinity from the observed melting temperatures

4.1 Model

4.2. Curve fitting

4.3. Fitting errors

Contact details

Overview
FoldAffinity has 9 panels (Figure 1). Panels 1-3 contain the necessary steps to
analyze user data using the isothermal approach. The Panel Tm fitting can be used
to estimate binding affinities directly from the observed melting temperatures. The
Simulate data Panel can be used before doing an experiment to analyze the
expected change in the signal depending on the binding affinity and the protein and
ligand concentrations.

Figure 1. FoldAffinity online tool panels.

1. Load input

1.1. Input file (raw data)

FoldAffinity accepts as input several kind of files:

A)​ The xlsx file (processed) generated by the Nanotemper Prometheus
machine that has one sheet called 'Overview' with a column called 'Sample
ID' with the names of the samples (ligand concentration) (Figure 2), and four

sheets called 'Ratio', '330nm', '350nm' and 'Scattering'. The first column of the
signal sheet ('Ratio', '330nm', '350nm', 'Scattering') should be called 'Time [s]'.
The second column should have the temperature data and all subsequent
columns store the fluorescence data (Figure 3). The order of the fluorescence
columns should match the order of the 'Sample ID' column in the 'Overview'
sheet.

Figure 2. Example of the ‘SampleID’ column in the ‘Overview’ sheet required by FoldAffinity
to load the Nanotemper spreadsheet input file.

Figure 3. Example of the ‘Ratio’ sheet required by FoldAffinity to load the Nanotemper
spreadsheet input file.

B)​ The xls file generated by the ThermoFluor Assay in a qPCR machine. One
sheet called 'RFU' where the first row has the sample positions (header), the

first column has the temperature data and all subsequent columns store the
fluorescence data (Figure 4).

Figure 4. Example of the ‘RFU’ sheet required by FoldAffinity to load ThermoFluor data.

C)​ The xlsx file generated by the Prometheus Panta instrument. This file has
one sheet called ‘Overview’ with a column called 'Sample ID' with the names
of the samples (Figure 2), and one sheet called ‘Data Export’ where all the
data is stored (Figure 5). The ‘Data Export’ sheet columns should have the
following order:

Temperature capillary 1 ; Ratio capillary 1 ; … ; Temperature capillary 1 ; 350
nm capillary 1 ; … ; Temperature capillary 1 ; 330 nm capillary 1 ; … ;
Temperature capillary 1 ; scattering capillary 1 ; … ; Temperature capillary 2 ;
Ratio capillary 2; … ; Temperature capillary n ; Ratio capillary n.

​ Columns whose names include "Derivative" ​​are not read.

Figure 5. Example of the ‘Data Export’ sheet required by FoldAffinity to load the Prometheus
Panta spreadsheet input file.

D)​ The text file (.txt) generated by the QuantStudio™ 3 System instrument
(Figure 6). Comments should be at the beginning of the file and start with ‘*’.
The header is the first line with more than 6 words, i.e. ‘Well’, ‘Well Position’,
… , ‘Target Name’. The column number 2 has the sample IDs. The columns
number 4 and 5 have the signal and temperature data.

Figure 6. Example of the input file required by FoldAffinity to load the QuantStudio™ 3
System instrument data.

E)​ The xlsx file generated by the Nanotemper Prometheus Tycho instrument.
This file has one sheet called ‘Results’ (with 6 columns named '#', 'Capillary
label',..., 'Sample Brightness') (Figure 7), and one sheet called 'Profiles_raw'
where the fluorescence data is stored.

Figure 7. Example of the ‘Results’ sheet required by FoldAffinity to retrieve the number of
samples. This example file was generated by the Nanotemper Prometheus Tycho
instrument.

The ‘Profiles_raw’ sheet columns should have the following structure (Figure
8):

​ One row with information about the recorded signal, e.g., ‘Ratio 350 nm / 330
nm’, ‘Brightness @ 330 nm’, ‘Brightness @ 350 nm’.

One row with the capillary numbers.
One row with the time, temperature and sample names.
The remaining rows store the data.

Figure 8. Example of the ‘Profiles_raw’ sheet required by FoldAffinity to load the
temperature and signal data. This example file was generated by the Nanotemper
Prometheus Tycho instrument.

F) The text file (.txt) generated by Agilent's MX3005P qPCR instrument. The
data format is the following:

Line 1:​ Header
Line 2:​ Segment 2 Plateau 1 Well 1
Line 3: ​ ROX
Line 4:​ 1 1706 25.0
Line 5:​ 2 2581 25.8
Line n:​ 70​ 4845​ 93.7
Line n+1:​ Segment 2 Plateau 1 Well 2
Line n+2:​ ROX
Line n+3:​ 1​ 1707​ 25.0

The data of each well is separated by rows containing the sentence ‘Segment No
Plateau No Well No’. The rows after the line with ‘ROX’ contain the fluorescence
and temperature data (second and third columns respectively).

1.2. Median filter (smoothing)

The median filter consists of calculating the median value of a temperature rolling
window.

1.3. Melting temperature (Tm) estimation using the first derivative

A non-model approach to estimate the melting temperature involves estimating the
maximum or the minimum of the first derivative, depending on the way the signal
changes with the temperature. In FoldAffinity, the Tm values are estimated as
follows. First, the median value of the first derivative in the interval

and [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 6; 𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 11]
 is calculated. Then, we obtain [𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 11; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 6]

the mean of those two median values and add it (if it positive), or subtract it (if it is
negative), to the first derivative in the interval

. This is done to shift the derivative [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 1; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 1]
baseline. Last, if the absolute value of the minimum (of the derivative) is higher than
the absolute value of the maximum, we use the minimum to estimate the Tm.
Otherwise, we use the maximum. If many curves are present, we always use the
same option.

To compute the derivative we use the Savitzky-Golay function as implemented in
numpy (scipy.signal.savgol_filter — SciPy v1.6.1 Reference Guide) with a polynomial
degree 4 and window size of 10 degrees.

2. Fit fluorescence

2.1. Model

Each fluorescence versus temperature curve is fitted with a two-state folding model
where the signal is the sum of the fluorescence of the folded and unfolded states.

 ​ ​ (1) 𝐹(𝑇) = 𝐹
𝑜𝑏𝑠

(𝐼𝐹 + 𝑇 * 𝑆𝐹) + 𝑈(𝐼𝑈 + 𝑇 * 𝑆𝑈)

where and U are respectively the observed folded and unfolded fractions, and 𝐹

𝑜𝑏𝑠
𝐼𝐹

are the intercept of the folded and unfolded fractions, and are the slope of 𝐼𝑈 𝐼𝑈 𝑆𝑈
the folded and unfolded fractions, and

 ​​ ​ ​ (2) 𝐹
𝑜𝑏𝑠

(𝐾
𝑢,𝑜𝑏𝑠

) = 1 / (1 + 𝐾
𝑢,𝑜𝑏𝑠

)

​ ​ ​ (3) 𝑈(𝐾
𝑢,𝑜𝑏𝑠

) = 𝐾
𝑢,𝑜𝑏𝑠

 / (1 + 𝐾
𝑢,𝑜𝑏𝑠

)

with

 ​​ ​ ​ (4) 𝐾
𝑢,𝑜𝑏𝑠

 (𝑇) = 𝑒
(−∆𝐺

𝑜𝑏𝑠
 / 𝑅𝑇)

= 𝑈
𝐹+𝐹𝐿

 ∆𝐺

𝑜𝑏𝑠
 (𝑇) = ∆𝐻

𝑜𝑏𝑠
* (1 − 𝑇

𝑇
𝑚,𝑜𝑏𝑠

+273.15) +

​ (5) − 𝐶
𝑝

* (𝑇
𝑚,𝑜𝑏𝑠

+ 273. 15 − 𝑇 + 𝑇 * 𝑙𝑜𝑔(𝑇
𝑇

𝑚,𝑜𝑏𝑠
+273.15))

where R is the gas constant, is the free energy of unfolding, is the ∆𝐺

𝑜𝑏𝑠
 (𝑇) 𝑈

equilibrium concentration of the unfolded species, F is the equilibrium concentration
of the folded unbound species, is the equilibrium concentration of the folded 𝐹𝐿
bound species, is the observed melting temperature, is the enthalpy of 𝑇

𝑚,𝑜𝑏𝑠
∆𝐻

𝑜𝑏𝑠

unfolding, and is the heat capacity at a constant temperature. 𝐶
𝑝

Equation 18 is thermodynamically correct only when there is no ligand involved (

). When there is ligand present, . In spite of 𝐾
𝑢,𝑜𝑏𝑠

= 𝐾
𝑢

= 𝑈 / 𝐹 𝐾𝑢
𝑜𝑏𝑠

= 𝑈 / (𝐹 + 𝐹𝐿)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html

this, Bai et al. and Niebling et al. have proven that this equation allows a correct
estimation of the equilibrium dissociation constant.1,2

2.2. Curve fitting

Once the data is loaded in FoldAffinity, the first and last 10 degrees of each
fluorescence melting curve is fitted using the equation of a line to obtain initial values
of , , and parameters. 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐹𝑜𝑙𝑑𝑒𝑑 𝑆𝑙𝑜𝑝𝑒𝐹𝑜𝑙𝑑𝑒𝑑 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑 𝑆𝑙𝑜𝑝𝑒𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑
Then, each curve is fitted individually using the Levenberg Marquardt (damped
least-squares) algorithm to estimate , and . These values can be used ∆𝐻

𝑜𝑏𝑠
𝑇

𝑚,𝑜𝑏𝑠
𝐶

𝑝

directly or the whole data can be fitted again to force shared values of the slope
parameters and / or value. 𝐶

𝑝

2.3. Fitting errors

The standard deviation of all fitted parameters is computed using the square root of
diagonal values from the fit parameter covariance matrix reported by scipy.curve_fit
function. These values are an approximation (underestimation) of the real errors.

3. Fit unfolded fraction

3.1. Models

The models implemented in FoldAffinity are based on the coupling between ligand
binding and protein folding and require that the ligand is completely soluble at all the
measured concentrations and temperatures.

One binding site

At a fixed temperature, if we assume that the ligand can only bound the folded state,
a one binding site system can be described with the following reactions.

​ ​ (6) 𝑈 + 𝐿 ⬌ 𝐹 + 𝐿 ⬌ 𝐹𝐿

where , , and are respectively the unfolded state, folded state, bound folded 𝑈 𝐹 𝐹𝐿 𝐿
state and ligand. The associated equations and principle of mass conservation are

2 Niebling, S., Burastero, O., Bürgi, J., Günther, C., Defelipe, L. A., Sander, S., ... & García-Alai, M.
(2021). FoldAffinity: binding affinities from nDSF experiments. Scientific reports, 11(1), 1-17.

1 Bai, N., Roder, H., Dickson, A., & Karanicolas, J. (2019). Isothermal analysis of ThermoFluor data
can readily provide quantitative binding affinities. Scientific reports, 9(1), 1-15.

 ​ ​ ​ (7) 𝐾
𝑢
 = 𝑈 / 𝐹

​ ​ ​ (8) 𝐾
𝑑
 = (𝐹 * 𝐿) / 𝐹𝐿

​ ​ ​ (9) 𝑃
0
 = 𝑈 + 𝐹 + 𝐹𝐿

​ ​ ​ (10) 𝐿
0
 = 𝐿 + 𝐹𝐿

where and are respectively the unfolding and the equilibrium dissociation 𝐾

𝑢
𝐾

𝑑

constant, and are respectively the total protein and total ligand concentration. 𝑃
0

𝐿
0

If we knew and , FL could be obtained by solving 𝐾

𝑢
𝐾

𝑑

​ ​ ​ (11) 0 = 𝐹𝐿2 + 𝑝𝐹𝐿 + 𝑞
 ​ (12) 𝑝 = 𝑃

0
 / (𝐾

𝑢
 + 1) + 𝐿

0
+ 𝐾

𝑑

 ​ (13) 𝑞 = 𝑃
0
 𝐿

0
 / (𝐾

𝑢
 + 1)

And then , and could be calculated to determine the unfolded fraction (𝑈 𝐹

). Therefore, at a fixed temperature, the unfolded fraction versus ligand 𝑈 / (𝐹 + 𝐹𝐿)
concentration curve allows to estimate and . 𝐾

𝑢
𝐾

𝑑

Two binding sites (microscopic constants)

The system is described by the reactions

​ ​ (14) 𝑈 + 2𝐿 ⬌ 𝐹 + 2𝐿
 ​ ​ ​ (15) 𝐹 + 2𝐿 ⬌ 𝐹𝐿 + 𝐿
​ ​ (16) 𝐹 + 2𝐿 ⬌ 𝐿𝐹 + 𝐿

 ​ (17) 𝐹𝐿 + 𝐿 ⬌ 𝐿𝐹𝐿
 ​ ​ (18) 𝐿𝐹 + 𝐿 ⬌ 𝐿𝐹𝐿

where F is the free folded protein, FL and LF are the two possible protein-ligand
complexes and LFL is the protein with two ligands. F, FL, LF and LFL depend on the
Kds, total ligand concentration and free ligand concentration in the following 𝐿

0
𝐿

𝑓𝑟𝑒𝑒

way

​ ​ (19) 𝐹 = 𝐾
𝑑,1

* 𝐾
𝑑,2

* (𝐿
0

− 𝐿
𝑓𝑟𝑒𝑒

) / (𝐾
𝑑,1

+ 𝐾
𝑑,2

+ 2𝐿
𝑓𝑟𝑒𝑒

) / 𝐿
𝑓𝑟𝑒𝑒

​ ​ ​ ​ ​ ​ ​ (20) 𝐹𝐿 = 𝐿
𝑓𝑟𝑒𝑒

* 𝐹 / 𝐾
𝑑,2

​ ​ ​ ​ ​ ​ ​ (21) 𝐹𝐿 = 𝐿
𝑓𝑟𝑒𝑒

* 𝐹 / 𝐾
𝑑,1

​ ​ ​ ​ ​ ​ ​ (22) 𝐿𝐹𝐿 = 𝐿
𝑓𝑟𝑒𝑒

* 𝐿𝐹 / 𝐾
𝑑,2

We can obtain the value of by solving 𝐿

𝑓𝑟𝑒𝑒

​ ​ ​ ​ ​ ​ (23) 𝑋3 + 𝑝𝑋2 + 𝑞𝑋 + 𝑟 = 0

where

 ​​ ​ ​ ​ (24) 𝑝 = 𝐾
𝑑,1

+ 𝐾
𝑑,2

 + (2 * 𝑃
0

− 𝐿
0
)

​ (25) 𝑞 = (𝑃
0

− 𝐿
0
) * (𝐾

𝑑,1
+ 𝐾

𝑑,2
) + 𝐾

𝑑,1
* 𝐾

𝑑,2
* (1 + 𝐾

𝑢
)

​ ​ ​ ​ ​ (26) 𝑟 =− 𝐿
0

* 𝐾
𝑑,1

* 𝐾
𝑑,2

* (1 + 𝐾
𝑢
)

For simplicity, for now we only provide the option to fit this model using . 𝐾

𝑑,1
= 𝐾

𝑑,2

3.2. Curve fitting

The unfolded fraction versus ligand concentration curve is fitted using the Levenberg
Marquardt (damped least-squares) algorithm to estimate (or and at 𝐾

𝑑
𝐾

𝑑,1
, 𝐾

𝑑,2
) 𝐾

𝑢

the chosen temperature.

3.3. Fitting errors

The standard deviation of all fitted parameters is computed using the square root of
diagonal values from the fit parameter covariance matrix.

When fitting the '1:1' or the '1:2' (one Kd) binding models, we also provide the
marginal asymmetric confidence interval. It has been shown that this approach is
more robust in estimating uncertainties, so we recommend reporting this result.3

Briefly, the lower and upper bounds of the 95 % confidence interval are given by the
values of Kd satisfying

​​ ​ ​ ​ (27) 𝑅𝑆𝑆(𝐾
𝑑
) = 𝑅𝑆𝑆

0
(1 + 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑉𝑎𝑙𝑢𝑒

𝑛−𝑝)

where RSS0 is the residual sum of squares using the best estimates for all the
parameters, is the residual sum of squares using a fixed value of Kd (fitting 𝑅𝑆𝑆(𝐾

𝑑
)

again the other parameters), n is the number of data points, p is the number of

3 Paketurytė, Vaida, et al. "Uncertainty in protein–ligand binding constants: asymmetric confidence
intervals versus standard errors." European Biophysics Journal 50.3 (2021): 661-670.

parameters, and critcialValue is the critical value of the Fisher-Snedecor distribution
with n - p and 1 degress of freedom and a confidence level 95 %.

4. Alternative Tm fitting: Binding affinity from the observed
melting temperatures

4.1 Model

If we suppose that the enthalpy () and entropy () of unfolding, and the Kd do not ∆𝐻 ∆𝑆
change significantly in the vicinity of the melting temperature of the protein, the 𝑇

𝑚

free energy of unfolding for a one binding-site system can be expressed as:

 ​ ​ ​ (28) ∆𝐺(𝑇
𝑚,𝑂𝑏𝑠

) = ∆𝐻 − 𝑇
𝑚,𝑂𝑏𝑠

∆𝑆 + 𝑅𝑇
𝑚,𝑂𝑏𝑠

* 𝑙𝑛(1 +
𝐿

𝑓𝑟𝑒𝑒

𝐾𝑑)

and for a two-binding sites system,

 ​ (29) ∆𝐺(𝑇
𝑚,𝑂𝑏𝑠

) = ∆𝐻 − 𝑇
𝑚,𝑂𝑏𝑠

∆𝑆 + 𝑅𝑇
𝑚,𝑂𝑏𝑠

* 𝑙𝑛(1 + 𝐿
𝑓𝑟𝑒𝑒

*
𝐿

𝑓𝑟𝑒𝑒
+𝐾

𝑑,1
+𝐾

𝑑,2

𝐾
𝑑,1

*𝐾
𝑑,2

)

Taking into account that at the , without ligand, we have the following equality: 𝑇

𝑚

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (30) ∆𝐻 = 𝑇

𝑚
∆𝑆

If we approximate the free ligand concentration using the total ligand concentration
we can fit the observed melting temperatures by using

 ​ ​ ​ ​ ​ ​ (31) 𝑇
𝑚,𝑂𝑏𝑠

= 𝑇
𝑚

(1 −
𝑅𝑇

𝑚
𝑙𝑛(1+𝐿

𝑓𝑟𝑒𝑒
 / 𝐾

𝑑
)

∆𝐻)
−1

in the case of one-binding site, or

 ​ ​ ​ (32) 𝑇
𝑚,𝑂𝑏𝑠

= 𝑇
𝑚

(1 − ∆𝐻−1(𝑅𝑇
𝑚

𝑙𝑛(1 + 𝐿
𝑓𝑟𝑒𝑒

*
𝐿

𝑓𝑟𝑒𝑒
+𝐾

𝑑,1
+𝐾

𝑑,2

𝐾
𝑑,1

*𝐾
𝑑,2

)))
−1

in case of two-binding sites.

4.2. Curve fitting

The observed melting temperature calculated from the first derivative as a function of
the total ligand concentration is fitted using the Levenberg Marquardt (damped
least-squares) algorithm to estimate and (or . ∆𝐻 𝐾

𝑑
𝐾

𝑑,1
, 𝐾

𝑑,2
)

4.3. Fitting errors

The standard error of all fitted parameters is based on the covariance matrix (using
the R programming language package minpack.lm).

When fitting the '1:1' or the '1:2' (one Kd) binding models, we also provide the
marginal asymmetric confidence interval (See Section 3.3.).

Contact details
For further assistance, please contact us:

​ 📧 spc@embl-hamburg.de
​ 📌EMBL (c/o DESY), Notkestrasse 85, Build. 25a, 22607 Hamburg, Germany

Packages

FoldAffinity is possible thanks to:

R language: R Core Team (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

R package shiny: Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan
McPherson (2020). shiny: Web Application Framework for R. R package version
1.4.0.2. https://CRAN.R-project.org/package=shiny

R package viridis: Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib'.
R package version 0.5.1. https://CRAN.R-project.org/package=viridis

R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse. Journal of
Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical Math
Functions. R package version 2.2.9. https://CRAN.R-project.org/package=pracma

R package shinydashboard: Winston Chang and Barbara Borges Ribeiro (2018).
shinydashboard: Create Dashboards with 'Shiny'. R package version 0.7.1.
https://CRAN.R-project.org/package=shinydashboard

R package ggplot2: H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.

R package xlsx: Adrian Dragulescu and Cole Arendt (2020). xlsx: Read, Write,
Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.3.
https://CRAN.R-project.org/package=xlsx

R package reshape2: Hadley Wickham (2007). Reshaping Data with the reshape
Package. Journal of Statistical Software, 21(12), 1-20. URL
http://www.jstatsoft.org/v21/i12/.

R package tippy: John Coene (2018). tippy: Add Tooltips to 'R markdown'
Documents or 'Shiny' Apps. R package version 0.0.1.
https://CRAN.R-project.org/package=tippy

R package shinyalert: Pretty Popup Messages (Modals) in 'Shiny'. R package
version 1.1. https://CRAN.R-project.org/package=shinyalert

https://www.r-project.org/
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=viridis
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=shinydashboard
https://cran.r-project.org/package=xlsx
http://www.jstatsoft.org/v21/i12/
https://cran.r-project.org/package=tippy
https://cran.r-project.org/package=shinyalert

R package plotly: C. Sievert. Interactive Web-Based Data Visualization with R,
plotly, and shiny. Chapman and Hall/CRC Florida, 2020.

R package tableHTML: Theo Boutaris, Clemens Zauchner and Dana Jomar (2019).
tableHTML: A Tool to Create HTML Tables. R package version 2.0.0.
https://CRAN.R-project.org/package=tableHTML

R package rhandsontable: Jonathan Owen (2018). rhandsontable: Interface to the
'Handsontable.js' Library. R package version 0.3.7.
https://CRAN.R-project.org/package=rhandsontable

R package remotes: Jim Hester, Gábor Csárdi, Hadley Wickham, Winston Chang,
Martin Morgan and Dan Tenenbaum (2020). remotes: R Package Installation from
Remote Repositories, Including 'GitHub'. R package version 2.1.1.
https://CRAN.R-project.org/package=remotes

R package devtools: Hadley Wickham, Jim Hester and Winston Chang (2020).
devtools: Tools to Make Developing R Packages Easier. R package version 2.3.0.
https://CRAN.R-project.org/package=devtools

R package shinyjs: Dean Attali (2020). shinyjs: Easily Improve the User Experience
of Your Shiny Apps in Seconds. R package version 1.1.
https://CRAN.R-project.org/package=shinyjs

R package data.table: Matt Dowle and Arun Srinivasan (2019). data.table:
Extension of data.frame. R package version 1.12.8.
https://CRAN.R-project.org/package=data.table

R package reticulate: Kevin Ushey, JJ Allaire and Yuan Tang (2020). reticulate:
Interface to 'Python'. R package version 1.16.
https://CRAN.R-project.org/package=reticulate

R package shinycssloaders: Andras Sali and Dean Attali (2020). shinycssloaders:
Add CSS Loading Animations to 'shiny' Outputs. R package version 0.3.
https://CRAN.R-project.org/package=shinycssloaders

Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference
Manual. Scotts Valley, CA: CreateSpace.

Python package numpy: Travis E, Oliphant. A guide to NumPy, USA: Trelgol
Publishing, (2006). Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation, Computing in
Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37

https://cran.r-project.org/package=tableHTML
https://cran.r-project.org/package=rhandsontable
https://cran.r-project.org/package=remotes
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=shinyjs
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=shinycssloaders

Python package pandas: Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010)

Python package scipy: Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3),
261-272.

Python package xlrd: https://xlrd.readthedocs.io/en/latest/index.html

Python package natsort: https://natsort.readthedocs.io/en/master/

https://xlrd.readthedocs.io/en/latest/index.html
https://natsort.readthedocs.io/en/master/

	Overview
	1. Load input
	1.1. Input file (raw data)
	1.2. Median filter (smoothing)
	1.3. Melting temperature (Tm) estimation using the first derivative

	2. Fit fluorescence
	2.1. Model
	2.2. Curve fitting
	2.3. Fitting errors

	3. Fit unfolded fraction
	3.1. Models
	3.2. Curve fitting
	3.3. Fitting errors

	4. Alternative Tm fitting: Binding affinity from the observed melting temperatures
	4.1 Model
	4.2. Curve fitting
	4.3. Fitting errors

	Contact details

