

eSPC, an Online Data Analysis
Platform for Molecular

Biophysics

MoltenProt 1.1 User
Documentation

January 2026

Table of Contents

1. New features
​ 1.1. Barycentric mean
​ 1.2. Singular value decomposition
​ 1.3. Native and unfolded baselines
​ 1.4. Empirical models
​ 1.5. Filters

2. Data import and processing

2.1. Input file
2.2. Normalisation
2.3. Median filter
2.4. Savitzky-Golay window size
2.5. Melting temperature estimation using the first derivative

3. Fitting
3.1. Signal to analyse
3.2. Model selection
3.3. Temperature range for baseline estimation
3.4. Curve fitting
3.5. Fitting errors
3.6. Fitting residuals

4. Analyse
4.1. Protein stability score

Contact details

Overview
MoltenProt has seven panels (Figure 1). Panels 1-3 contain the necessary steps to
analyse the data. Panel 4 can be used to export the results of the analysis.

Figure 1. Screenshot of MoltenProt sidebar.

1. New features v1.1

1.1. Barycentric mean

When importing whole spectrum data generated by Applied Photophysics or
Unchained Labs DSF instruments, the barycentric mean is also computed. This
value is defined as:

​ (1) 𝐵𝐶𝑀(𝐼, λ) =
𝑖

𝑛

∑ λ
𝑖
𝐼

𝑖
 /

𝑖

𝑛

∑ 𝐼
𝑖

where is the intensity at wavelength . We recommend using the barycenter for 𝐼

𝑖
λ

𝑖

qualitative studies (see Section ‘Signal to analyse’).

1.2. Singular value decomposition (SVD)

When importing whole spectrum data, a new menu can be opened by pressing the
‘Show full spectrum menu’ button. Inside that menu, we can apply, separately for
each sample, singular value decomposition. Briefly, the spectra at the different
temperatures are decomposed as a linear combination of basis spectra as follows:

​ (2) 𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚(𝑡) = 𝑐
1
(𝑡)ϕ

1
+ 𝑐

2
(𝑡)ϕ

2
+ 𝑐

3
(𝑡)ϕ

3
+ . . . + 𝑐

𝑛
(𝑡)ϕ

𝑛

where is the temperature, each is a basis spectrum and are the associated 𝑡 ϕ

𝑖
𝑐

𝑖

coefficients. The basis spectra are orthogonal to each other and have unit norm.
Typically, in differential scanning fluorimetry datasets, a few basis spectra are
relevant and explain most of the variance in the data. In MoltenProt, only the
coefficients of the first and second basis spectra are returned for analysis.

1.3. Native and unfolded baselines

The baseline of the native and unfolded states are centered at 25°C, instead of 0
Kelvin. For example, the signal produced by the folded state changed from

​ ​ (3) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
𝑛
(𝑘

𝑛
𝑇 + 𝑏

𝑛
)

to

​ (4) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
𝑛
(𝑘

𝑛
Δ𝑇 + 𝑏

𝑛
)

where T is the temperature, is the temperature minus the reference temperature Δ𝑇
293.15K (20°C), is the fraction of native protein, is the intercept term, and is 𝑓

𝑛
𝑏

𝑛
𝑘

𝑛

the slope term.

Moreover, the baselines for the folded and unfolded state can be modelled with a
constant, linear, or quadratic equation:

​ (5) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
𝑛
𝑏

𝑛

or

​ (6) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
𝑛
(𝑏

𝑛
+ 𝑘

𝑛
Δ𝑇)

or

​ (7) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
𝑛
(𝑏

𝑛
+ 𝑘

𝑛
Δ𝑇 + 𝑞

𝑛
Δ𝑇2)

where is the intercept, is the linear term and is the quadratic term. 𝑏

𝑛
𝑘

𝑛
𝑞

𝑛

1.4. Empirical models

There are two new implementations for the empirical models (See Appendix for a
mathematical derivation).

1.5. Filters

After the fitting is done, the results can be filtered based on

a)​ A selected threshold for the relative errors of the fitted parameters
b)​ A selected threshold for the standard error of the fitting
c)​ Minimum and maximum values for certain parameters (Tm, Tonset, ΔH, etc.)

2. Data import and processing

2.1. Input file (raw data)

MoltenProt can parse several types of files:

A)​ The xlsx file (processed) generated by the Nanotemper Prometheus
instrument that has one sheet called 'Overview' with a column called 'Sample
ID' with the names of the samples (Figure 2), and four sheets called 'Ratio',
'330nm', '350nm' and 'Scattering'. The first column of the signal sheet ('Ratio',
'330nm', '350nm', 'Scattering') should be called 'Time [s]'. The second column
should have the temperature data and all subsequent columns store the
fluorescence data (Figure 3). The order of the fluorescence columns should
match the order of the 'Sample ID' column in the 'Overview' sheet.

Figure 2. Example of the ‘SampleID’ column in the ‘Overview’ sheet required by MoltenProt
to load the Nanotemper spreadsheet input file.

Figure 3. Example of the ‘Ratio’ sheet required by MoltenProt to load the Nanotemper
spreadsheet input file.

B)​ The xls file generated by the ThermoFluor assay in a qPCR instrument. This
file has one sheet called 'RFU' where the first row has the sample positions
(header), the first column has the temperature data and all subsequent
columns store the fluorescence data (Figure 4).

Figure 4. Example of the ‘RFU’ sheet required by MoltenProt to load ThermoFluor data.

C)​ The xlsx file generated by a Prometheus Panta instrument. This file has one
sheet called ‘Overview’ with a column called 'Sample ID' with the names of
the samples (Figure 2), and one sheet called ‘Data Export’ where all the data
is stored (Figure 5). The ‘Data Export’ sheet columns should have the
following order:

Temperature capillary 1 ; Ratio capillary 1 ; … ; Temperature capillary 1 ; 350
nm capillary 1 ; … ; Temperature capillary 1 ; 330 nm capillary 1 ; … ;
Temperature capillary 1 ; scattering capillary 1 ; … ; Temperature capillary 2 ;
Ratio capillary 2; … ; Temperature capillary n ; Ratio capillary n.

​ Columns whose names include "Derivative" ​​are not read.

Figure 5. Example of the ‘Data Export’ sheet required by MoltenProt to load the Prometheus
Panta spreadsheet input file.

D)​ The text file (.txt) generated by a QuantStudio™ 3 System instrument (Figure

6). Comments should be at the beginning of the file and start with ‘*’. The
header is the first line with more than 6 words, i.e. ‘Well’, ‘Well Position’, … ,
‘Target Name’. The column number 2 has the sample IDs. The columns
number 4 and 5 have the signal and temperature data.

Figure 6. Example of the input file required by MoltenProt to load the QuantStudio™ 3
System instrument data.

E)​ The xlsx file generated by the Nanotemper Prometheus Tycho instrument.
This file has one sheet called ‘Results’ (with 6 columns named '#', 'Capillary
label',..., 'Sample Brightness') (Figure 7), and one sheet called 'Profiles_raw'
where the fluorescence data is stored.

Figure 7. Example of the ‘Results’ sheet required by MoltenProt to retrieve the sample
names. This example file was generated by the Nanotemper Prometheus Tycho instrument.

The ‘Profiles_raw’ sheet columns should have the following structure (Figure
8):

​ One row with information about the recorded signal, e.g., ‘Ratio 350 nm / 330
nm’, ‘Brightness @ 330 nm’, ‘Brightness @ 350 nm’.

One row with the capillary numbers.
One row with the time, temperature and sample names.
The remaining rows store the temperature and signal data.

Figure 8. Example of the ‘Profiles_raw’ sheet required by MoltenProt to load the
temperature and signal data. This example file was generated by the Nanotemper
Prometheus Tycho instrument.

F) The text file (.txt) generated by Agilent's MX3005P qPCR instrument. The
data format is the following:

Line 1:​ Header
Line 2:​ Segment 2 Plateau 1 Well 1
Line 3: ​ ROX
Line 4:​ 1 1706 25.0
Line 5:​ 2 2581 25.8
Line n:​ 70​ 4845​ 93.7
Line n+1:​ Segment 2 Plateau 1 Well 2
Line n+2:​ ROX
Line n+3:​ 1​ 1707​ 25.0

The data of each well is separated by rows containing the sentence ‘Segment No
Plateau No Well No’. The rows after the line with ‘ROX’ contain the fluorescence
and temperature data (second and third columns respectively).

​ G) The JSON file (.supr) exported by the SUPR-DSF instrument software
from AppliedPhotophysics (https://www.photophysics.com/product-pages/supr-dsf/).

The JSON file should have the following structure:

●​ An item called 'Samples' that contains:

●​ A sub-item called 'SampleName'
●​ A sub-item called 'WellLocations'

●​ An item called 'Wells' that contains:

●​ A sub-item called '_scans'
●​ A sub-item called 'PhysicalLocation'

●​ An item called 'Wavelengths'

Additionally, within the '_scans' sub-item, there are further sub-items called:

●​ 'Temperature'
●​ 'Signal'

Below you’ll find a minimal example.

{
 "Samples": [
 {
 "SampleName": "SampleA1",
 "WellLocations": "A1"
 }
],
 "Wells": [
 {
 "_scans": [
 {
 "Temperature": 20,
 "Signal": [
 7993,
 9579,
 10742
]
 },
 {
 "Temperature": 30,
 "Signal": [
 8993,
 10579,
 11742
]
 }

https://www.photophysics.com/product-pages/supr-dsf/

],
 "PhysicalLocation": "A1"
 }
],
 "Wavelengths": [
 310,
 311,
 312
]
}

After loading the file, the temperature data will be interpolated using steps of 0.5
degrees. Additionally, if there is wavelength data near 330 nm and 350 nm, the 'Ratio
350nm / 330nm' will be automatically calculated and available for further analysis.

H) A csv file with the temperature data in the first column and the signal data in the
subsequent columns. The condition labels are read from the header.

Figure 9. Example of a csv file that can be imported into MoltenProt.

I) The spreadsheet file (.xlsx) exported by the UNCLE instrument. In this file, there is
one sheet per measured condition. The name of the condition is extracted from the
cell located in the first row and fifth column. The second row has the temperature
data in the format ‘Temp: xx, Time: xx’. The signal matrix starts at the fifth row,
second column. The wavelength data is in the first column.

Figure 10. Example of one sheet from the UNCLE xlsx file.

J) The spreadsheet file (.xlsx) exported by the AUNTY instrument. In this file, there is
one sheet per measured condition. The name of the condition is extracted from the
sheet name. The first column has the temperature data, while the second row
contains the wavelength data. The signal matrix starts at the third row, second
column.

Figure 11. Example of one sheet from the AUNTY xlsx file.

2.2. Normalisation

There are 3 available options to normalise each fluorescence-based melting curve.

a.​ Divide by initial value: Divide by the median value of the signal corresponding
to the first two degrees of temperature.

b.​ Max-min normalisation: Transform the signal by applying

​ (8) 𝑦
𝑛𝑜𝑟𝑚

(𝑦) = 𝑦 − 𝑚𝑖𝑛(𝑦)
𝑚𝑎𝑥(𝑦)−𝑚𝑖𝑛(𝑦)

c.​ Area normalisation: Divide the signal by the area under the curve (calculated
using the trapezoidal rule).

2.3. Median filter (smoothing)

The median filter consists of calculating the median value of a temperature rolling
window.

2.4. Savitzky-Golay (SG) window size

This parameter, in degrees Celsius, is used to calculate the number of data points to
apply the Savitzky-Golay filter corresponding to a polynomial of degree 4 before
computing the first or second derivative as implemented in Scipy
(scipy.signal.savgol_filter — SciPy v1.6.1 Reference Guide). For the second
derivative, we add 5 degrees to the selected SG temperature window size.

The number of data points is obtained by computing 𝑛(𝑤)

 ​ (9) 𝑛(𝑤) = 𝑐𝑒𝑖𝑙(𝑤
Δ𝑇) // 2 * 2 + 1

where is the SG parameter fixed by the user, returns the smallest integer 𝑤 𝑐𝑒𝑖𝑙(𝑥) 𝑖
such that , and corresponds to the average number of data points in one 𝑖 >= 𝑥 Δ𝑇
degree of temperature.

2.5. Melting temperature (Tm) estimation using the first derivative

A non-model approach to estimate the melting temperature involves estimating the
maximum or the minimum of the first derivative, depending on the way the signal
changes with the temperature. In MoltenProt, the Tm values are estimated as
follows. First, the median value of the first derivative in the interval

 and [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 6; 𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 11]
 is calculated. Then, we obtain [𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 11; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 6]

the mean of those two median values and add it (if it positive), or subtract it (if it is
negative), to the first derivative in the interval

. This is done to shift the derivative [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 6; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 6]
baseline. Last, if the absolute value of the minimum (of the derivative) is higher than
the absolute value of the maximum, we use the minimum to estimate the Tm.
Otherwise, we use the maximum. If many curves are present, we always use the
same option.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html

3. Fitting

3.1. Signal to analyse

There are several fluorescence changes that can be monitored, such as the
fluorescence intensity at a given excitation and emission wavelengths, the quantum
yield, the emission maximum, the fluorescence lifetime, the ratio of fluorescence
intensities at two different emission wavelengths, etc. (Maurice R. Eftink et al., 1994).
To be able to reliably estimate thermodynamic parameters, the signal must be
related to the mole fractions of the different species. The most straightforward
approach is to use extensive properties that are proportional to the amount of
material in the system (Hugues Bedouelle, 2016). This way, the observed signal can
be expressed as a linear combination of the signals of the different species weighted
by their mole fractions.

The fluorescence intensity at a given excitation and emission wavelengths is an
extensive property and can be used to monitor unfolding as described above.
However, the emission maximum, or the ratio signal, defined as the ratio of the
fluorescence intensities at two different emission wavelengths, are not extensive
properties and using them may result in unreliable estimates (Hugues Bedouelle,
2016; Gabriel Žoldák, 2017).

3.2. Model selection

The models presented here assume that the fluorescence signal can be expressed
as a linear combination of the signal produced by the different protein states. The
difference in the models lies in establishing which are the possible states and how to
calculate their concentration. The Python functions are available at Github.

​ Equilibrium (or Empirical) two-state model 𝑁 ⇔ 𝑈

​ Equilibrium (or Empirical) three-state model 𝑁 ⇔ 𝐼 ⇔ 𝑈

​​ Irreversible two-state model 𝑁 ⇒ 𝑈

Furthermore, there can be no fluorescence dependence on temperature, a linear
dependence, or a quadratic dependence

https://github.com/SPC-Facility-EMBL-Hamburg/differentialScanningFluorimetryApps/blob/main/appFiles/MoltenProt/models.py

Equilibrium two-state1,2

This thermodynamic-based model presupposes that the protein only exists in the
native (folded) or unfolded state and that there is an equilibrium between these two
states given by the unfolding reaction N ⇆ U.The fluorescence signal is 𝐹(𝑇)
described by the equation

​ (10) 𝐹(𝑇) = 𝑓
𝑛
(𝑞

𝑛
∆𝑇2 + 𝑘

𝑛
∆𝑇 + 𝑏

𝑛
) + 𝑓

𝑢
(𝑞

𝑢
∆𝑇2 + 𝑘

𝑢
∆𝑇 + 𝑏

𝑢
)

where , , are the quadratic, linear and constant terms of the pre-transition 𝑞

𝑛
𝑘

𝑛
𝑏

𝑛

baseline (native), , and are the quadratic, linear and constant terms of the 𝑞
𝑢

𝑘
𝑢

𝑏
𝑢

post-transition (unfolded) baseline, is the fraction of protein in the native state and 𝑓
𝑛

 is the fraction of protein in the denatured state. is calculated as 𝑓
𝑢

𝑓
𝑛

​(11) 𝑓
𝑛
(𝑇) = (1 + 𝐾

𝑢
)−1

where

​ (12) 𝐾
𝑢
(𝑇) = 𝑒−∆𝐺 / 𝑅𝑇

and

 ​ (13) ∆𝐺(𝑇) = ∆𝐻
𝑚

(1 − 𝑇
𝑇

𝑚
) − ∆𝐶

𝑝
(𝑇

𝑚
 − 𝑇 + 𝑇 𝑙𝑛(𝑇

𝑇
𝑚

)))

where R is the universal gas constant, is the enthalpy of unfolding at the melting ∆𝐻

𝑚

temperature , and is the heat capacity of unfolding. is not fitted and 𝑇
𝑚

∆𝐶
𝑝

∆𝐶
𝑝

assumed to be zero. If the User has knowledge about that value, it can be used to
correct the calculated Gibbs energy of unfolding at the standard temperature.

Figure 12 shows a simulation of the model.

2 Bedouelle, H. (2016). Principles and equations for measuring and interpreting protein stability: From
monomer to tetramer. Biochimie, 121, 29-37.

1 Santoro, M. M., & Bolen, D. W. (1988). Unfolding free energy changes determined by the linear
extrapolation method. 1. Unfolding of phenylmethanesulfonyl. alpha.-chymotrypsin using different
denaturants. Biochemistry, 27(21), 8063-8068.

Figure 12. Simulated signal of the Equilibrium two-state unfolding model. The following
parameters were used: , , , , , ∆𝐻 = 100 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 𝑇

𝑚
= 55°𝐶 𝑏

𝑛
= 100 𝑏

𝑢
= 50 𝑘

𝑛
= − 0. 001

, , and . 𝑘
𝑢

= − 0. 001 𝑞
𝑛

= − 0. 002 𝑞
𝑢

= − 0. 002

Empirical two-state v1.1

This model is similar to the Equilibrium two-state, but instead of enthalpy of
unfolding, it uses the parameter to model the steepness of the fluorescence 𝑇

𝑜𝑛𝑠𝑒𝑡

curve. The signal is described by the same expression as Equation 10, with the
difference that is calculated as follows: ∆𝐺(𝑇)

​ (14) ∆𝐺(𝑇) =
(𝑇

𝑚
−𝑇)(𝑅𝑇

𝑜𝑛𝑠𝑒𝑡
𝑙𝑛(0.01/0.99))

𝑇
𝑜𝑛𝑠𝑒𝑡

 − 𝑇
𝑚

Figure 13 shows a simulation of the model.

Figure 13. Simulated signal of the Empirical two-state unfolding model. The following
parameters were used: , , , , , 𝑇

𝑜𝑛𝑠𝑒𝑡
= 50. 15°𝐶 𝑇

𝑚
= 55°𝐶 𝑏

𝑛
= 100 𝑏

𝑢
= 50 𝑘

𝑛
= − 0. 001

, , and . The signal values are the same as in 𝑘
𝑢

= − 0. 001 𝑞
𝑛

= − 0. 002 𝑞
𝑢

= − 0. 002

Figure 12.

Equilibrium three-state3

This model adds the presence of one short-lived protein state: native (N),
intermediate (I) and unfolded (U). The fluorescence signal is described by the
equation:

​ (15) 𝐹(𝑇) = 𝑓
𝑛
(𝑞

𝑛
∆𝑇2 + 𝑘

𝑛
∆𝑇 + 𝑏

𝑛
) + 𝑓

𝑢
(𝑞

𝑢
∆𝑇2 + 𝑘

𝑢
∆𝑇 + 𝑏

𝑢
) + 𝑓

𝑖
𝑏

𝑖

where

 is the fraction of protein in the intermediate state, and is the signal produced by 𝑓
𝑖

𝑏
𝑖

the intermediate state (no dependence on temperature is included).

There are two unfolding equilibria, N ⇆ I and I ⇆ U. The respective equilibrium
constants and are calculated using Equation 12. is set to zero in both 𝐾

1
𝐾

2
∆𝐶

𝑝

cases. As a result, the model contains four thermodynamic parameters. and 𝑇
1

∆𝐻
1

for the first reaction, and and for the second one. , and are given by: 𝑇
2

∆𝐻
2

𝑓
𝑛

𝑓
𝑖

𝑓
𝑢

3 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z. (2017).
Exploration of protein unfolding by modelling calorimetry data from reheating. Scientific reports, 7(1),
1-14.

​ (16) 𝑓

𝑛
= 1

1+𝐾
1
+𝐾

1
𝐾

2

​ (17) 𝑓
𝑖

=
𝐾

1

1+𝐾
1
+𝐾

1
𝐾

2

​ (18) 𝑓
𝑢

=
𝐾

1
𝐾

2

1+𝐾
1
+𝐾

1
𝐾

2

Figure 14 shows a simulation of the model.

Figure 14. Simulated signal of the Equilibrium three-state unfolding model. The following
parameters were used: , , , , , ∆𝐻

1
= 100 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 𝑇

1
= 55°𝐶 𝑏

𝑛
= 100 𝑏

𝑖
= 75 𝑏

𝑢
= 50

, , , and , , 𝑘
𝑛

= − 0. 001 𝑘
𝑢

= − 0. 001 𝑞
𝑛

= − 0. 002 𝑞
𝑢

= − 0. 002 ∆𝐻
2

= 150 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙

. 𝑇
2

= 85°𝐶

Empirical three-state v1.1

This model is similar to the Equilibrium three-state, but instead of enthalpy of
unfolding, it uses the parameters and to model the steepness of the 𝑇

𝑜𝑛𝑠𝑒𝑡,1
𝑇
𝑜𝑛𝑠𝑒𝑡,2

two transitions:

​ (19) ∆𝐺
𝑁⇆𝐼

(𝑇) = (𝑇
1
 − 𝑇) (𝑅 𝑇

𝑜𝑛𝑠𝑒𝑡,1
𝑙𝑛(0.01

0.99)) / (𝑇
𝑜𝑛𝑠𝑒𝑡,1

 − 𝑇
1
)

​ (20) ∆𝐺

𝐼⇆𝑈
(𝑇) = (𝑇

2
 − 𝑇) (𝑅 𝑇

𝑜𝑛𝑠𝑒𝑡,2
𝑙𝑛(0.01

0.99)) / (𝑇
𝑜𝑛𝑠𝑒𝑡,2

 − 𝑇
2
)

Figure 15 shows a simulation of the model.

Figure 15. Simulated signal of the Empirical three-state unfolding model. The following
parameters were used: , , , , , 𝑇

𝑜𝑛𝑠𝑒𝑡,1
= 50. 16°𝐶 𝑇

1
= 55°𝐶 𝑏

𝑛
= 100 𝑏

𝑖
= 75 𝑏

𝑢
= 50

, , , and , , 𝑘
𝑛

= − 0. 001 𝑘
𝑢

= − 0. 001 𝑞
𝑛

= − 0. 002 𝑞
𝑢

= − 0. 002 𝑇
𝑜𝑛𝑠𝑒𝑡,2

= 77. 37°𝐶

. The signal values are the same as in Figure 14. 𝑇
2

= 85°𝐶

Irreversible two-state4,5

This model assumes that the protein only exists in the native (N) and unfolded (U)
state and that the unfolding reaction is irreversible. The signal is described by the
equation:

​ (21) 𝐹(𝑇) = 𝑥
𝑛
(𝑞

𝑛
∆𝑇2 + 𝑘

𝑛
∆𝑇 + 𝑏

𝑛
) + (1 − 𝑥

𝑛
)(𝑞

𝑢
∆𝑇2 + 𝑘

𝑢
∆𝑇 + 𝑏

𝑢
)

where is the fraction of natively folded molecules as a function of temperature 𝑥

𝑛
(𝑇)

and can be obtained via numerical integration:

​ (22) 𝑥
𝑛
(𝑇) =

𝑇
𝑚𝑖𝑛

𝑇
𝑚𝑎𝑥

∫ −1
𝑣 * 𝑒𝑥𝑝(

−𝐸
𝑎

𝑅 (1
𝑇 − 1

𝑇
𝑓

) * 𝑥
𝑛
)

5 Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential scanning
calorimetry. Biophysical journal, 61(4), 921-935.

4 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z. (2017).
Exploration of protein unfolding by modelling calorimetry data from reheating. Scientific reports, 7(1),
1-14.

where and are the start and end temperatures of the measurement, is 𝑇

𝑚𝑎𝑥
𝑇

𝑚𝑖𝑛
 𝑣

the scan rate in degrees/minutes, is the activation energy of unfolding, is the 𝐸
𝑎

𝑇
𝑓

temperature where the reaction rate constant of unfolding equals 1. For simplicity, 𝑥
𝑛

is assumed to be 1 at . 𝑇
𝑚𝑖𝑛

Figure 16 shows a simulation of the model.

Figure 16. Simulated signal of the Irreversible three-state unfolding model. The following
parameters were used: , , , , , 𝑇

𝑓
= 80°𝐶 𝐸

𝑎
= 35 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 𝑏

𝑛
= 100 𝑏

𝑢
= 50 𝑘

𝑛
= − 0. 001

, , and . 𝑘
𝑢

= − 0. 001 𝑞
𝑛

= − 0. 002 𝑞
𝑢

= − 0. 002

3.3. Temperature range for baseline estimation

The initial values of the parameters , , , , , are estimated by fitting the 𝑞

𝑛
𝑘

𝑛
𝑏

𝑛
𝑞

𝑢
𝑘

𝑢
𝑏

𝑢

first or last n-degrees (selected by the user). If ‘quadratic’ baselines are used, a
polynomial of second degree is used. If ‘linear’ baselines are used, the equation of a
line is used. If no dependence on temperature is modelled, the average value is
used.

3.4. Curve fitting

Each curve is fitted individually using the Levenberg Marquardt (damped
least-squares) algorithm as implemented in the curve_fit function from the Scipy
package.

3.5. Fitting errors

The standard deviation of all fitted parameters is computed using the square root of
diagonal values from the fit parameter covariance matrix reported by scipy.curve_fit
function. These values are an underestimation of the true errors.

3.6. Fitting residuals

The residuals of the fitting are normalized by dividing them by the standard error.

4. Analyse

4.1. Protein stability score

After fitting a model, a protein stability score is provided which can be used to sort
the conditions.

Model Score
Equilibrium two-state Δ𝐺 𝑜𝑓 𝑢𝑛𝑓𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑡 298. 15 𝐾

Empirical two-state 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒((𝑇

𝑚
; 𝑇

𝑂𝑛𝑠𝑒𝑡
), (0; 0))

Equilibrium three-state Δ𝐺 𝑜𝑓 𝑢𝑛𝑓𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑡 298. 15 𝐾
 (Δ𝐺 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑁 ⇆ 𝐼 + Δ𝐺 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐼 ⇆ 𝑈)

Empirical two-state 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒((𝑇

1
; 𝑇

𝑜𝑛𝑠𝑒𝑡,1
), (0; 0)) +

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒((𝑇
2
; 𝑇

𝑜𝑛𝑠𝑒𝑡,2
), (0; 0))

Irreversible two-state − 𝑙𝑛(𝑘

𝑖𝑟𝑟𝑒𝑣
(298. 15 𝐾))

Contact details

For further assistance, please contact us:

​ 📧 spc@embl-hamburg.de
​ 📌EMBL (c/o DESY), Notkestrasse 85, Build. 25a, 22607 Hamburg, Germany

References

Eftink, Maurice R. "The use of fluorescence methods to monitor unfolding transitions
in proteins." Biophysical journal 66.2 (1994): 482-501.

Bedouelle, Hugues. "Principles and equations for measuring and interpreting protein
stability: From monomer to tetramer." Biochimie 121 (2016): 29-37.

Žoldák, Gabriel, Daniel Jancura, and Erik Sedlák. "The fluorescence intensities ratio
is not a reliable parameter for evaluation of protein unfolding transitions." Protein
Science 26.6 (2017): 1236-1239.

Kotov, V., Mlynek, G., Vesper, O., Pletzer, M., Wald, J., Teixeira‐Duarte, C. M., ... &
Marlovits, T. C. (2021). In‐depth interrogation of protein thermal unfolding data with
MoltenProt. Protein Science, 30(1), 201-217.

Burastero, O., Niebling, S., Defelipe, L. A., Günther, C., Struve, A., & Garcia Alai, M.
M. (2021). eSPC: an online data-analysis platform for molecular biophysics.
Biological Crystallography, 77(10), 1241-1250.

Appendix

Derivation of the Empirical Two-state v1.1 model

We start by assuming that and are constant over the temperature range of ∆𝐻 ∆𝑆
interest. at the temperature of melting and onset temperature is defined ∆𝐺 𝑇

𝑚
𝑇

𝑜𝑛𝑠𝑒𝑡

as:

​ (23) ∆𝐺
𝑇

𝑚

= ∆𝐻 − 𝑇
𝑚

∆𝑆

​ (24) ∆𝐺

𝑇
𝑜𝑛𝑠𝑒𝑡

= ∆𝐻 − 𝑇
𝑜𝑛𝑠𝑒𝑡

∆𝑆

Using Equations (23) and (24), we have that

​ (25) ∆𝑆 =
 ∆𝐺

𝑇
𝑚

 − ∆𝐺
𝑇

𝑜𝑛𝑠𝑒𝑡

𝑇
𝑜𝑛𝑠𝑒𝑡

 − 𝑇
𝑚

 at any given temperature is calculated as: ∆𝐺 𝑇

​ (26) ∆𝐺(𝑇) = ∆𝐻 − 𝑇∆𝑆

Substituting , ∆𝐻

​ (27) ∆𝐺(𝑇) = ∆𝐺
𝑇

𝑚

+ 𝑇
𝑚

∆𝑆 − 𝑇∆𝑆

Given that equals zero, ∆𝐺

𝑇
𝑚

​ (28) ∆𝐺(𝑇) = (𝑇

𝑚
− 𝑇)∆𝑆

Substituting , ∆𝑆

 ​ (29) ∆𝐺(𝑇) = (𝑇
𝑚

− 𝑇)
 − ∆𝐺

𝑇
𝑜𝑛𝑠𝑒𝑡

𝑇
𝑜𝑛𝑠𝑒𝑡

 − 𝑇
𝑚

Finally, corresponds to the temperature where 1 % of the protein is unfolded ∆𝐺

𝑇
𝑜𝑛𝑠𝑒𝑡

and 99 % is folded:

​ (30) ∆𝐺
𝑇

𝑜𝑛𝑠𝑒𝑡

= − 𝑅𝑇
𝑜𝑛𝑠𝑒𝑡

𝑙𝑛(0.01
0.99)

Derivation of the Empirical Three-state v1.1 model

We start by assuming that , , and are constant over the ∆𝐻

𝑁⇆𝐼
∆𝑆

𝑁⇆𝐼
∆𝐻

𝐼⇆𝑈
∆𝑆

𝐼⇆𝑈

temperature range of interest. and at the temperature of transition (∆𝐺
𝑁⇆𝐼

∆𝐺
𝐼⇆𝑈

𝑇
1

and) and onset temperature (and) are defined as: 𝑇
2

𝑇
𝑜𝑛𝑠𝑒𝑡,1

𝑇
𝑜𝑛𝑠𝑒𝑡,2

​ ​ (31) ∆𝐺

𝑁⇆𝐼,𝑇
1

= ∆𝐻
𝑁⇆𝐼

 − 𝑇
1
∆𝑆

𝑁⇆𝐼

​ (32) ∆𝐺

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

= ∆𝐻
𝑁⇆𝐼

 − 𝑇
𝑜𝑛𝑠𝑒𝑡,1

∆𝑆
𝑁⇆𝐼

​ ​ (33) ∆𝐺

𝐼⇆𝑈,𝑇
2

= ∆𝐻
𝐼⇆𝑈

 − 𝑇
2
∆𝑆

𝐼⇆𝑈

​ (34) ∆𝐺

𝐼⇆𝑈,𝑇
𝑜𝑛𝑠𝑒𝑡,2

= ∆𝐻
𝐼⇆𝑈

 − 𝑇
𝑜𝑛𝑠𝑒𝑡,2

∆𝑆
𝐼⇆𝑈

If we combine Equations 31 and 32, and Equations 33 and 34,

​ (35) ∆𝑆
𝑁⇆𝐼

=
 Δ𝐺

𝑁⇆𝐼,𝑇
1

− Δ𝐺
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

𝑇
𝑜𝑛𝑠𝑒𝑡,1

 − 𝑇
1

​ (36) ∆𝑆
𝐼⇆𝑈

=
 Δ𝐺

𝐼⇆𝑈,𝑇
2

− Δ𝐺
𝐼⇆𝑈,𝑇

𝑜𝑛𝑠𝑒𝑡,2

𝑇
𝑜𝑛𝑠𝑒𝑡,2

 − 𝑇
2

Then at any given temperature can be written as, ∆𝐺

𝑁⇆𝐼
𝑇

 ​ (37) ∆𝐺

𝑁⇆𝐼
(𝑇) = ∆𝐺

𝑁⇆𝐼,𝑇
1

+ 𝑇
1
∆𝑆

𝑁⇆𝐼
 − 𝑇∆𝑆

𝑁⇆𝐼

and can be expressed as, ∆𝐺

𝐼⇆𝑈

 ​ (38) ∆𝐺

𝐼⇆𝑈
(𝑇) = ∆𝐺

𝐼⇆𝑈,𝑇
2

+ 𝑇
2
∆𝑆

𝐼⇆𝑈
 − 𝑇∆𝑆

𝐼⇆𝑈

By definition, and are zero. Therefore, ∆𝐺

𝑁⇆𝐼,𝑇
1

∆𝐺
𝐼⇆𝑈,𝑇

2

 (39) ∆𝐺
𝑁⇆𝐼

(𝑇) = (𝑇
1

− 𝑇)
 − Δ𝐺

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

𝑇
𝑜𝑛𝑠𝑒𝑡,1

 − 𝑇
1

and

 ​(40) ∆𝐺
𝐼⇆𝑈

(𝑇) = (𝑇
2
 − 𝑇)

 − Δ𝐺
𝐼⇆𝑈,𝑇

𝑜𝑛𝑠𝑒𝑡,2

𝑇
𝑜𝑛𝑠𝑒𝑡,2

 − 𝑇
2

Finally,

​(41) Δ𝐺
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

= − 𝑅𝑇
𝑜𝑛𝑠𝑒𝑡,1

𝑙𝑛(𝐾
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

)

where

​ (42) 𝐾
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

=
[𝑁]

𝑇
𝑜𝑛𝑠𝑒𝑡,1

[𝐼]
𝑇

𝑜𝑛𝑠𝑒𝑡,1

Assuming that is negligible at , then [𝑈] 𝑇

𝑜𝑛𝑠𝑒𝑡,1

 ​ (43) 𝐾

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

= [𝑁]
[𝐼]

 ​ (44) 𝐾

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

= 0.01
0.99

can be derived in a similar way (assuming that is negligible at) Δ𝐺

𝐼⇆𝑈,𝑇
𝑜𝑛𝑠𝑒𝑡,2

 [𝑁] 𝑇
𝑜𝑛𝑠𝑒𝑡,2

and equals

​ (45) Δ𝐺
𝐼⇆𝑈,𝑇

𝑜𝑛𝑠𝑒𝑡,2

= − 𝑅𝑇
𝑜𝑛𝑠𝑒𝑡,2

𝑙𝑛(0.01
0.99)

To summarise, is the temperature where equals zero, is the temperature 𝑇

1
Δ𝐺

𝑁⇆𝐼
𝑇

2

where equals zero, is the temperature where 99 % of the protein is in Δ𝐺
𝐼⇆𝑈

𝑇
𝑜𝑛𝑠𝑒𝑡,1

the folded state, and is the temperature where 99 % of the protein is in the 𝑇
𝑜𝑛𝑠𝑒𝑡,2

intermediate state.

Packages

MoltenProt (online version) is possible thanks to:

R language: R Core Team (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

R package shiny: Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan
McPherson (2020). shiny: Web Application Framework for R. R package version
1.4.0.2. https://CRAN.R-project.org/package=shiny

R package viridis: Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib'.
R package version 0.5.1. https://CRAN.R-project.org/package=viridis

R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse. Journal of
Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical Math
Functions. R package version 2.2.9. https://CRAN.R-project.org/package=pracma

R package shinydashboard: Winston Chang and Barbara Borges Ribeiro (2018).
shinydashboard: Create Dashboards with 'Shiny'. R package version 0.7.1.
https://CRAN.R-project.org/package=shinydashboard

R package ggplot2: H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.

R package xlsx: Adrian Dragulescu and Cole Arendt (2020). xlsx: Read, Write,
Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.3.
https://CRAN.R-project.org/package=xlsx

R package reshape2: Hadley Wickham (2007). Reshaping Data with the reshape
Package. Journal of Statistical Software, 21(12), 1-20. URL
http://www.jstatsoft.org/v21/i12/.

R package tippy: John Coene (2018). tippy: Add Tooltips to 'R markdown'
Documents or 'Shiny' Apps. R package version 0.0.1.
https://CRAN.R-project.org/package=tippy

R package shinyalert: Pretty Popup Messages (Modals) in 'Shiny'. R package
version 1.1. https://CRAN.R-project.org/package=shinyalert

https://www.r-project.org/
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=viridis
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=shinydashboard
https://cran.r-project.org/package=xlsx
http://www.jstatsoft.org/v21/i12/
https://cran.r-project.org/package=tippy
https://cran.r-project.org/package=shinyalert

R package plotly: C. Sievert. Interactive Web-Based Data Visualization with R,
plotly, and shiny. Chapman and Hall/CRC Florida, 2020.

R package tableHTML: Theo Boutaris, Clemens Zauchner and Dana Jomar (2019).
tableHTML: A Tool to Create HTML Tables. R package version 2.0.0.
https://CRAN.R-project.org/package=tableHTML

R package rhandsontable: Jonathan Owen (2018). rhandsontable: Interface to the
'Handsontable.js' Library. R package version 0.3.7.
https://CRAN.R-project.org/package=rhandsontable

R package remotes: Jim Hester, Gábor Csárdi, Hadley Wickham, Winston Chang,
Martin Morgan and Dan Tenenbaum (2020). remotes: R Package Installation from
Remote Repositories, Including 'GitHub'. R package version 2.1.1.
https://CRAN.R-project.org/package=remotes

R package devtools: Hadley Wickham, Jim Hester and Winston Chang (2020).
devtools: Tools to Make Developing R Packages Easier. R package version 2.3.0.
https://CRAN.R-project.org/package=devtools

R package shinyjs: Dean Attali (2020). shinyjs: Easily Improve the User Experience
of Your Shiny Apps in Seconds. R package version 1.1.
https://CRAN.R-project.org/package=shinyjs

R package data.table: Matt Dowle and Arun Srinivasan (2019). data.table:
Extension of data.frame. R package version 1.12.8.
https://CRAN.R-project.org/package=data.table

R package reticulate: Kevin Ushey, JJ Allaire and Yuan Tang (2020). reticulate:
Interface to 'Python'. R package version 1.16.
https://CRAN.R-project.org/package=reticulate

R package shinycssloaders: Andras Sali and Dean Attali (2020). shinycssloaders:
Add CSS Loading Animations to 'shiny' Outputs. R package version 0.3.
https://CRAN.R-project.org/package=shinycssloaders

 Baptiste Auguie (2019). egg: Extensions for 'ggplot2': Custom Geom, Custom
Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size.
R package version 0.4.5. https://CRAN.R-project.org/package=egg

Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference
Manual. Scotts Valley, CA: CreateSpace.

https://cran.r-project.org/package=tableHTML
https://cran.r-project.org/package=rhandsontable
https://cran.r-project.org/package=remotes
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=shinyjs
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=shinycssloaders
https://cran.r-project.org/package=egg

Python package numpy: Travis E, Oliphant. A guide to NumPy, USA: Trelgol
Publishing, (2006). Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation, Computing in
Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37

Python package pandas: Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010)

Python package scipy: Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3),
261-272.

Python package xlrd: https://xlrd.readthedocs.io/en/latest/index.html

Python package natsort: https://natsort.readthedocs.io/en/master/

https://xlrd.readthedocs.io/en/latest/index.html
https://natsort.readthedocs.io/en/master/

	1. New features v1.1
	1.1. Barycentric mean
	1.2. Singular value decomposition (SVD)
	1.3. Native and unfolded baselines
	1.4. Empirical models
	1.5. Filters

	2. Data import and processing
	2.1. Input file (raw data)
	2.2. Normalisation
	2.3. Median filter (smoothing)
	2.4. Savitzky-Golay (SG) window size
	2.5. Melting temperature (Tm) estimation using the first derivative

	3. Fitting
	3.1. Signal to analyse
	3.2. Model selection
	3.3. Temperature range for baseline estimation
	3.4. Curve fitting
	3.5. Fitting errors
	3.6. Fitting residuals

	4. Analyse
	4.1. Protein stability score

	
	Contact details
	References
	Appendix
	Derivation of the Empirical Two-state v1.1 model
	Derivation of the Empirical Three-state v1.1 model

