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Overview
MoltenProt has seven panels (Figure 1). Panels 1-3 contain the necessary steps to
analyse the data. Panel 4 can be used to export the results of the analysis.
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Figure 1. Screenshot of MoltenProt sidebar.
1. New features v1.1
1.1. Barycentric mean

When importing whole spectrum data generated by Applied Photophysics or
Unchained Labs DSF instruments, the barycentric mean is also computed. This
value is defined as:

BCM(I, ) =§_Ai1i/§_1i (1)

where Il, is the intensity at wavelength )\i. We recommend using the barycenter for

qualitative studies (see Section ‘Signal to analyse’).

1.2. Singular value decomposition (SVD)

When importing whole spectrum data, a new menu can be opened by pressing the
‘Show full spectrum menu’ button. Inside that menu, we can apply, separately for
each sample, singular value decomposition. Briefly, the spectra at the different
temperatures are decomposed as a linear combination of basis spectra as follows:

Spectrum(t) = cl(t)q)1 + cz(t)cl)2 + c3(t)c|)3 + ... + cn(t)cl)n (2)



where t is the temperature, each q)i is a basis spectrum and c are the associated

coefficients. The basis spectra are orthogonal to each other and have unit norm.
Typically, in differential scanning fluorimetry datasets, a few basis spectra are
relevant and explain most of the variance in the data. In MoltenProt, only the
coefficients of the first and second basis spectra are returned for analysis.

1.3. Native and unfolded baselines

The baseline of the native and unfolded states are centered at 25°C, instead of 0
Kelvin. For example, the signal produced by the folded state changed from

Signal(T) = fn(knT + bn) (3)
to
Signal(T) = f (k AT +b ) (4)

where T is the temperature, AT is the temperature minus the reference temperature
293.15K (20°C), fn is the fraction of native protein, bn is the intercept term, and kn is

the slope term.

Moreover, the baselines for the folded and unfolded state can be modelled with a
constant, linear, or quadratic equation:

Signal(T) = f b (5)

or

Signal(T) = f (b + k AT) (6)
or
Signal(T) = f (b +k AT +q AT  (7)
where bn is the intercept, kn is the linear term and q is the quadratic term.

1.4. Empirical models



There are two new implementations for the empirical models (See Appendix for a
mathematical derivation).

1.5. Filters

After the fitting is done, the results can be filtered based on

a) A selected threshold for the relative errors of the fitted parameters
b) A selected threshold for the standard error of the fitting
c) Minimum and maximum values for certain parameters (T,,, Tonsety AH, €fc.)

2. Data import and processing
2.1. Input file (raw data)

MoltenProt can parse several types of files:

A) The xIsx file (processed) generated by the Nanotemper Prometheus
instrument that has one sheet called 'Overview' with a column called 'Sample
ID' with the names of the samples (Figure 2), and four sheets called 'Ratio’,
'330nm’, '350nm' and 'Scattering'. The first column of the signal sheet ('Ratio’,
'330nm’, '350nm’, 'Scattering') should be called "Time [s]'. The second column
should have the temperature data and all subsequent columns store the
fluorescence data (Figure 3). The order of the fluorescence columns should
match the order of the 'Sample ID' column in the 'Overview' sheet.

[

Sample ID

/Al GuHCI 0.05 M
A2 GuHCI 0.52 M
‘A3 GuHCI 1 M

‘A4 GuHCI 1.47 M
‘A5 GUHCI 1.95 M
1A6 GuHCI 2.38 M
A7 GuHCI 2.5 M
iA8 GUHCI 2.61 M
A9 GuHCI 2.73 M
1A10 GUHC| 2.85 M
All GuHCI 2.97 M
Al2 GuHCI 3.09 M
'B1 GuHCI 3.21 M
B2 GuHCI 3.33 M
‘B3 GuHCI 3.45 M
B4 GuHCI 3.56 M
B5 GuHCI 3.68 M
1B6 GuHCI 4.25 M
'B7 GuHCI 4.82 M
1B8 GUHCI 5.39 M



Figure 2. Example of the ‘SamplelD’ column in the ‘Overview’ sheet required by MoltenProt

to load the Nanotemper spreadsheet input file.

B lcepiiay

2| Sample ID Al
2 [Time[s] Temperature [°C]
e 7.0 25.000
c 24.3 25.054
2 33.3 25.108
7 40.6 25.162
2 46.8 25.215
e 52.5 25.269
o 57.4 25.323
= 62.1 25.377
= 66.7 25.431
= 71.0 25.485

Figure 3. Example of the ‘Ratio’ sheet required by MoltenProt to load the Nanotemper

spreadsheet input file.

B) The xls file generated by the ThermoFluor assay in a qPCR instrument. This
file has one sheet called 'RFU' where the first row has the sample positions
(header), the first column has the temperature data and all subsequent
columns store the fluorescence data (Figure 4).

Fluorescence [counts]

0.940
0.939
0.943
0.939
0.942
0.941
0.942
0.941
0.942
0.940

Fluorescence [counts]

B C D | E F G H

i AD1 AD2 AD3 AD4 AD5 ADB AD7
5 64.79 501.82 398.53 61.91 73.26 129.38 38.53
s 63.14 513.32 416.32 63.13 72.41 130.21 40.43
17 61.52 522.98 437.17 64.34 72.21 131.14 42.45
|8 59.75 529.89 459.98 64.97 72.52 131.29 42.69
IE 57.78 535.95 483.14 65.89 72.30 131.90 43.18
10 55.73 540.72 504.85 67.40 71.83 131.75 42.82
Jik! 54.00 545.15 527.02 68.86 71.27 131.86 42.98
11z 52.82 549.80 549.27 70.20 71.55 131.55 42.65
JiE 52.14 554.45 570.59 70.37 72.86 131.79 42.15
|1a 51.42 558.53 589.62 70.41 74.39 132.50 41.38

Figure 4. Example of the ‘RFU’ sheet required by MoltenProt to load ThermoFluor data.

C) The xlIsx file generated by a Prometheus Panta instrument. This file has one
sheet called ‘Overview’ with a column called 'Sample ID' with the names of
the samples (Figure 2), and one sheet called ‘Data Export’ where all the data
is stored (Figure 5). The ‘Data Export’ sheet columns should have the

following order:

0.934
0.935
0.933
0.936
0.933
0.933
0.934
0.934
0.934
0.933



Temperature capillary 1 ; Ratio capillary 1 ; ... ; Temperature capillary 1 ; 350

nm capillary 1 ; ... ; Temperature capillary 1 ; 330 nm capillary 1 ; ... ;
Temperature capillary 1 ; scattering capillary 1 ; ... ; Temperature capillary 2 ;
Ratio capillary 2; ... ; Temperature capillary n ; Ratio capillary n.

Columns whose names include "Derivative" are not read.

[ I ot |

|Temperature for Cap.1 (°C) Ratio 350 nm / 330 nm for Cap.1
| 24.9993991851807 0.668331980705261
25.0000820159912 0.668272197244552
: 25.0013084411621 0.668575644493103
| 25.001501083374 0.66842645406723
| 25.0040893554687 0.667966544628143
25.00606918334%46 0.668425559997559
: 25.0104427337646 0.668148577213287
| 25.0115489959717 0.668168842792511
25 N1ALRT1215R7 N AAASNTNGG151411

Figure 5. Example of the ‘Data Export’ sheet required by MoltenProt to load the Prometheus
Panta spreadsheet input file.

D) The text file (.txt) generated by a QuantStudio™ 3 System instrument (Figure
6). Comments should be at the beginning of the file and start with *’. The
header is the first line with more than 6 words, i.e. ‘Well’, ‘Well Position’, ...,
‘Target Name’. The column number 2 has the sample IDs. The columns
number 4 and 5 have the signal and temperature data.

Pre-read Stage/Step =

Quantification Cycle Method = Ct

Signal Smoothing On = true

Stage where Melt Analysis is performed = Stage2

Stage/ Cycle where Ct Analysis is performed = Stage®, Step®
User Name = user

* % % % ¥ #

[Melt Curve Raw Dataﬂ

Well Well Position Reading Temperature Fluorescence Derivative Target Name
10 Al0 1 24.913 4,828.486 -1,144.751 Target 1
10 Al0 2 25.028 4,951.091 -9685.159 Target 1
10 Al0 3 25.142 4,722.069 -659.505 Target 1
10 Al0 4 25.257 4,786.491 -469.428 Target 1
18 Al0 5 25.371 5,124.026 -375.954 Target 1
18 Al0 6 25.486 4,948.212 -373.484 Target 1
18 Al0 T 25.601 4,832.502 -411.521 Target 1
18 Al0 8 25.715 4,961.322 -422.667 Target 1
18 Al0 9 25.830 4,779.467 -357.793 Target 1
18 Al0 16 25.944 5,039.901 -208.366 Target 1

Figure 6. Example of the input file required by MoltenProt to load the QuantStudio™ 3
System instrument data.

E) The xlIsx file generated by the Nanotemper Prometheus Tycho instrument.
This file has one sheet called ‘Results’ (with 6 columns named '#', 'Capillary
label',..., 'Sample Brightness') (Figure 7), and one sheet called 'Profiles_raw'
where the fluorescence data is stored.



Initial Sample

# Capillary label Ti#1 Ti#2 Ti#3 Ratio A Ratio | Brightness
1 Sampled 54.2 0.6700 0.2637 763.4
2 Sample2 54.7 05777 0.1825 688.3

3 Sampled 89.7 0.6071 0.0950 382.1

4 Sampled 0.6230 0.0480 73.6

5 Sample5

6 Sample6

Figure 7. Example of the ‘Results’ sheet required by MoltenProt to retrieve the sample
names. This example file was generated by the Nanotemper Prometheus Tycho instrument.

The ‘Profiles_raw’ sheet columns should have the following structure (Figure
8):

One row with information about the recorded signal, e.g., ‘Ratio 350 nm / 330
nm’, ‘Brightness @ 330 nm’, ‘Brightness @ 350 nm’.

One row with the capillary numbers.

One row with the time, temperature and sample names.

The remaining rows store the temperature and signal data.

Signal: Hatio 350 nm / 330 nm
Capillary: 1 2 3 4
Time[s] Temperature[°C] | Samplel | Sample2 | Sample3 Sampled
81.5 35.1 0.6699 0.5774 0.6065 0.6233
81.7 35.2 0.6701 0.5781 0.6063 0.6160
819 353 0.6705 0.5774 0.6079 0.6229

o 4 2R A A aTNA A ETTY A enEes e =20 i ]

Figure 8. Example of the ‘Profiles_raw’ sheet required by MoltenProt to load the
temperature and signal data. This example file was generated by the Nanotemper
Prometheus Tycho instrument.

F) The text file (.txt) generated by Agilent's MX3005P qPCR instrument. The
data format is the following:

Line 1: Header

Line 2: Segment 2 Plateau 1 Well 1
Line 3: ROX

Line 4: 1 1706 25.0

Line 5: 2 2581 25.8

Line n: 70 4845 93.7

Line n+1: Segment 2 Plateau 1 Well 2
Line n+2: ROX
Line n+3: 1 1707 25.0



The data of each well is separated by rows containing the sentence ‘Segment No
Plateau No Well No’. The rows after the line with ‘ROX’ contain the fluorescence
and temperature data (second and third columns respectively).

G) The JSON file (.supr) exported by the SUPR-DSF instrument software
from AppliedPhotophysics (https://www.photophysics.com/product-pages/supr-dsf/).

The JSON file should have the following structure:
e An item called 'Samples' that contains:

e A sub-item called 'SampleName'
e A sub-item called 'WellLocations'

e An item called 'Wells' that contains:

e A sub-item called ' scans'
e A sub-item called 'PhysicalLocation'

e An item called 'Wavelengths'

Additionally, within the '_scans' sub-item, there are further sub-items called:
e 'Temperature'

e 'Signal'

Below you’ll find a minimal example.

{
"Samples": [
{
"SampleName": "SampleA1",
"WellLocations": "A1"
}
I
"Wells":
{
" scans": [
{
"Temperature": 20,
"Signal": [
7993,
9579,
10742
|
2
{
"Temperature": 30,
"Signal": [
8993,
10579,
11742
|
}


https://www.photophysics.com/product-pages/supr-dsf/

]

"PhysicalLocation": "A1"

}
I8
"Wavelengths": [

310,

311,

312

]
}

After loading the file, the temperature data will be interpolated using steps of 0.5
degrees. Additionally, if there is wavelength data near 330 nm and 350 nm, the 'Ratio
350nm / 330nm' will be automatically calculated and available for further analysis.

H) A csv file with the temperature data in the first column and the signal data in the
subsequent columns. The condition labels are read from the header.

U Temperature Condition 1 Condition 2 Condition 2

2 10 20 20 20
3 11 30 30 a0
4 12 40 40 40
5 13 a0 50 50
5] 14 60 60 60
7 15 70 T0 T0
a2 16 a0 a0 a0
g 17 a0 a0 g0
10 1a 100 100 100
1 19 110 110 110
12 20 120 120 120
13 21 130 130 130
- 2y 1AM 1AM 14N

Figure 9. Example of a csv file that can be imported into MoltenProt.

I) The spreadsheet file (.xIsx) exported by the UNCLE instrument. In this file, there is
one sheet per measured condition. The name of the condition is extracted from the
cell located in the first row and fifth column. The second row has the temperature
data in the format ‘Temp: xx, Time: xx’. The signal matrix starts at the fifth row,
second column. The wavelength data is in the first column.



1 Sample Name 1
2 Temp :25, Time:134.9 Temp :25.49, Time:18*Temp :25.99, Time:23# T
£ VW avelength Intensity Intensity Intensity In
4

5 311.911193847656 1 15?.984| 1136.362| 1118.812

8 312.387084960938 1194.752 1185.197 1162.002

7 312.862884521484 1244.214 1232.758 1214172

8 313.338684082031 1299.843 1286.473 1264.072

9 313.814392089844 1358.016 1330.473 1312.704
10 314.290100097656 1410.235 1378.81 1368.539
11 314.765716552734 1483.058 1447.716 1421.273
12 315.241333007813 1525.251 1492.625 1492.752

Figure 10. Example of one sheet from the UNCLE xlsx file.

J) The spreadsheet file (.xIsx) exported by the AUNTY instrument. In this file, there is
one sheet per measured condition. The name of the condition is extracted from the
sheet name. The first column has the temperature data, while the second row
contains the wavelength data. The signal matrix starts at the third row, second

column.

2.2. Normalisation

There are 3 available options to normalise each fluorescence-based melting curve.

a. Divide by initial value: Divide by the median value of the signal corresponding
to the first two degrees of temperature.

b. Max-min normalisation: Transform the signal by applying

_ y —min(y)
Y norm(y ) = max(y)—min(y) (8)



c. Area normalisation: Divide the signal by the area under the curve (calculated
using the trapezoidal rule).

2.3. Median filter (smoothing)

The median filter consists of calculating the median value of a temperature rolling
window.

2.4. Savitzky-Golay (SG) window size

This parameter, in degrees Celsius, is used to calculate the number of data points to
apply the Savitzky-Golay filter corresponding to a polynomial of degree 4 before
computing the first or second derivative as implemented in Scipy
(scipy.signal.savgol_filter — SciPy v1.6.1 Reference Guide). For the second
derivative, we add 5 degrees to the selected SG temperature window size.

The number of data points n(w) is obtained by computing
nw) = ceil(%) //2*2 + 1 9)

where w is the SG parameter fixed by the user, ceil(x) returns the smallest integer i
such thati >= x, and AT corresponds to the average number of data points in one
degree of temperature.

2.5. Melting temperature (7,,) estimation using the first derivative

A non-model approach to estimate the melting temperature involves estimating the
maximum or the minimum of the first derivative, depending on the way the signal
changes with the temperature. In MoltenProt, the Tm values are estimated as
follows. First, the median value of the first derivative in the interval
[min(temperature) + 6; min(temperature) + 11] and
[max(temperature) — 11; max(temperature) — 6] is calculated. Then, we obtain
the mean of those two median values and add it (if it positive), or subtract it (if it is
negative), to the first derivative in the interval
[min(temperature) + 6; max(temperature) — 6]. This is done to shift the derivative
baseline. Last, if the absolute value of the minimum (of the derivative) is higher than
the absolute value of the maximum, we use the minimum to estimate the Tm.
Otherwise, we use the maximum. If many curves are present, we always use the
same option.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html

3. Fitting
3.1. Signal to analyse

There are several fluorescence changes that can be monitored, such as the
fluorescence intensity at a given excitation and emission wavelengths, the quantum
yield, the emission maximum, the fluorescence lifetime, the ratio of fluorescence
intensities at two different emission wavelengths, etc. (Maurice R. Eftink et al., 1994).
To be able to reliably estimate thermodynamic parameters, the signal must be
related to the mole fractions of the different species. The most straightforward
approach is to use extensive properties that are proportional to the amount of
material in the system (Hugues Bedouelle, 2016). This way, the observed signal can
be expressed as a linear combination of the signals of the different species weighted
by their mole fractions.

The fluorescence intensity at a given excitation and emission wavelengths is an
extensive property and can be used to monitor unfolding as described above.
However, the emission maximum, or the ratio signal, defined as the ratio of the
fluorescence intensities at two different emission wavelengths, are not extensive
properties and using them may result in unreliable estimates (Hugues Bedouelle,
2016; Gabriel Zoldak, 2017).

3.2. Model selection

The models presented here assume that the fluorescence signal can be expressed
as a linear combination of the signal produced by the different protein states. The
difference in the models lies in establishing which are the possible states and how to
calculate their concentration. The Python functions are available at Github.

NeU Equilibrium (or Empirical) two-state model
N & I & U Equilibrium (or Empirical) three-state model
N=>U Irreversible two-state model

Furthermore, there can be no fluorescence dependence on temperature, a linear
dependence, or a quadratic dependence


https://github.com/SPC-Facility-EMBL-Hamburg/differentialScanningFluorimetryApps/blob/main/appFiles/MoltenProt/models.py

Equilibrium two-state’2

This thermodynamic-based model presupposes that the protein only exists in the
native (folded) or unfolded state and that there is an equilibrium between these two
states given by the unfolding reaction N s U.The fluorescence signal F(T) is
described by the equation

F(T) =f (AT +k AT +b) +f (qAT" +k AT +b) (10)

where q kn, bnare the quadratic, linear and constant terms of the pre-transition
baseline (native), q, kuand buare the quadratic, linear and constant terms of the
post-transition (unfolded) baseline, fn is the fraction of protein in the native state and

fu is the fraction of protein in the denatured state. fn is calculated as

£ =@ +K) (1)

where

—AG /RT

K (T)=e (12)

and

AG(T) = AH (1 — ) — AC (T = T + Tin(=))  (13)

where R is the universal gas constant, AHm is the enthalpy of unfolding at the melting
temperature T, and ACp is the heat capacity of unfolding. ACp is not fitted and

assumed to be zero. If the User has knowledge about that value, it can be used to
correct the calculated Gibbs energy of unfolding at the standard temperature.

Figure 12 shows a simulation of the model.

' Santoro, M. M., & Bolen, D. W. (1988). Unfolding free energy changes determined by the linear
extrapolation method. 1. Unfolding of phenylmethanesulfonyl. alpha.-chymotrypsin using different
denaturants. Biochemistry, 27(21), 8063-8068.

2 Bedouelle, H. (2016). Principles and equations for measuring and interpreting protein stability: From
monomer to tetramer. Biochimie, 121, 29-37.



Equilibrium Two-State Model
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Figure 12. Simulated signal of the Equilibrium two-state unfolding model. The following
parameters were used: AH = 100 kcal/mol, Tm = 55°C, bn = 100, bu = 50, kn = — 0.001,

k = —0.001,g = —0.002,andqg = — 0.002.
u n u

Empirical two-state v1.1

This model is similar to the Equilibrium two-state, but instead of enthalpy of
unfolding, it uses the parameter Tonset to model the steepness of the fluorescence

curve. The signal is described by the same expression as Equation 10, with the
difference that AG(T) is calculated as follows:

(T —T)(RT _ 1n(0.01/0.99))

onset

AG(T) = (14)

onset m

Figure 13 shows a simulation of the model.



Empirical Two-State Signal vs Temperature
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Figure 13. Simulated signal of the Empirical two-state unfolding model. The following

parameters were used: T = 50.15°C, T = 55°C, b =100, b =50, k = — 0.001,
onset m n u n

ku = — 0.001, q = - 0.002, and q,= - 0.002. The signal values are the same as in

Figure 12.

Equilibrium three-state®

This model adds the presence of one short-lived protein state: native (N),
intermediate (I) and unfolded (U). The fluorescence signal is described by the
equation:

F(T) =f (AT +k AT +b)+f (qAT" +k AT +b)+fb (15)

where

fi is the fraction of protein in the intermediate state, and bl, is the signal produced by

the intermediate state (no dependence on temperature is included).

There are two unfolding equilibria, N s | and | s U. The respective equilibrium
constants K, and K, are calculated using Equation 12. ACp is set to zero in both

cases. As a result, the model contains four thermodynamic parameters. T1 and AH1

for the first reaction, and T, and AH, for the second one. fn, fi and fu are given by:

3 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z. (2017).
Exploration of protein unfolding by modelling calorimetry data from reheating. Scientific reports, 7(1),
1-14.



1

fo.=wraxx, (1)
Kl

fi=txwr (7
KIKZ

f,. = 1+K +K K, (18)

Figure 14 shows a simulation of the model.

Three-State Model Fluorescence Signal
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Figure 14. Simulated signal of the Equilibrium three-state unfolding model. The following
parameters were used: AH1 = 100 kcal/mol, T1 = 55°C, bn = 100, bi = 75, bu = 50,

kn = —0.001, ku = —0.001, q = - 0.002, and q,= — 0.002, AH2 = 150 kcal/mol,
T2 = 85°C.

Empirical three-state v1.1

This model is similar to the Equilibrium three-state, but instead of enthalpy of
unfolding, it uses the parameters Tonset1 and Tonset2 to model the steepness of the

two transitions:

0.01

AGN‘:;I(T) = (Tl a T) (R Tonset,lln(w))/(’ronset,l - Tl) (19)
AG,(T) = (T, = DRT, () /T, .. = T,) (20



Figure 15 shows a simulation of the model.
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Figure 15. Simulated signal of the Empirical three-state unfolding model. The following
parameters were used: Tonset1 = 50.16°C, T1 = 55°C, bn = 100, bi = 75, bu = 50,

k = —0.001, k = —0.001, g = —0.002, and g = —0.002, T = 77.37°C,
n u n u onset,2

T, = 85°C. The signal values are the same as in Figure 14.

Irreversible two-state*,®

This model assumes that the protein only exists in the native (N) and unfolded (U)
state and that the unfolding reaction is irreversible. The signal is described by the
equation:

F(T) =x (AT + k AT +b) + (1 —x)(qAT + kAT +b)  (21)

where xn(T)is the fraction of natively folded molecules as a function of temperature

and can be obtained via numerical integration:

_ max __1
v, (1) = = e

min

FE-T) ) (22)

4 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z. (2017).
Exploration of protein unfolding by modelling calorimetry data from reheating. Scientific reports, 7(1),
1-14.

% Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential scanning
calorimetry. Biophysical journal, 61(4), 921-935.



where Tmax and Tmm are the start and end temperatures of the measurement, v is
the scan rate in degrees/minutes, Eais the activation energy of unfolding, Tf is the
temperature where the reaction rate constant of unfolding equals 1. For simplicity, x

isassumedtobe1atT .
min

Figure 16 shows a simulation of the model.

Simulated Irreversible Unfolding Curve
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Figure 16. Simulated signal of the Irreversible three-state unfolding model. The following
parameters were used: Tf = 80°C, Ea = 35 kcal/mol, bn = 100, bu = 50, kn = — 0.001,

k = —0.001,g = —0.002,andg = — 0.002.
u n u

3.3. Temperature range for baseline estimation

The initial values of the parameters q., kn, bn, q, ku, bu are estimated by fitting the

first or last n-degrees (selected by the user). If ‘quadratic’ baselines are used, a
polynomial of second degree is used. If linear’ baselines are used, the equation of a
line is used. If no dependence on temperature is modelled, the average value is
used.

3.4. Curve fitting

Each curve is fitted individually using the Levenberg Marquardt (damped
least-squares) algorithm as implemented in the curve_fit function from the Scipy
package.



3.5. Fitting errors

The standard deviation of all fitted parameters is computed using the square root of
diagonal values from the fit parameter covariance matrix reported by scipy.curve_fit
function. These values are an underestimation of the true errors.

3.6. Fitting residuals
The residuals of the fitting are normalized by dividing them by the standard error.

4. Analyse

4.1. Protein stability score

After fitting a model, a protein stability score is provided which can be used to sort
the conditions.

Equilibrium two-state AG of unfolding at 298.15 K

), (0; 0))

Empirical two-state distance((Tm; T Onset

Equilibrium three-state  AG of unfolding at 298.15 K
(AG of reaction N S I + AG of reaction S U)

Empirical two-state distance((T v Tonset 1), (0;0)) +
distance((Tz; Tonset,Z)' (0; 0)

Irreversible two-state = In(k_ (298.15K))

Contact details

For further assistance, please contact us:

£ spc@embl-hamburg.de
EMBL (c/o DESY), Notkestrasse 85, Build. 25a, 22607 Hamburg, Germany
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Appendix
Derivation of the Empirical Two-state v1.1 model

We start by assuming that AH and AS are constant over the temperature range of
interest. AG at the temperature of melting Tm and onset temperature Tonset is defined

as.

AG, = AH — T AS (23)

m

AG, =AH — T__AS (24)

onset

set

Using Equations (23) and (24), we have that

AGT —AGT
AS = ———=== (25)

AG at any given temperature T is calculated as:

AG(T) = AH — TAS (26)



Substituting AH,

AG(T) = AG, + T AS — TAS (27)

m

Given that AGT equals zero,
AG(T) = (Tm — TAS (28)
Substituting AS,

AG(T) = (T, — T)5——5— (29)

onset m

Finally, AGT corresponds to the temperature where 1 % of the protein is unfolded

onset

and 99 % is folded:

= — 0.01
AGTonset B RTonsetln( 0.99 ) (30)

Derivation of the Empirical Three-state v1.1 model

We start by assuming that AH, _, AS ., AH _ and AS _ = are constant over the

temperature range of interest. AGN‘-I and AGH] at the temperature of transition (T1

and T.) and onset temperature (T and T ) are defined as:
2 onset,1 onset,2

AGN‘:I,Tl = AHNSI o TlASNSI (31)

AGN:I,TMM1 = AHNSI - Tonset,lASNSI (32)

AG1<:,U,T2 = AHISU - TZASI‘;U (33)

AGI‘:UT = AHISU B Tonset,ZASI‘:U (34)

’" onset,2

If we combine Equations 31 and 32, and Equations 33 and 34,



AG - AG

NSIT, NSIT

onset,1

AS _ AGIt.U,T . sur, (36)

onset,2 - 2

Then AGN<—1 at any given temperature T can be written as,
AGNSI(T) = AGN‘:I,T1+ TlASN‘:I - TASN‘:J (37)

and AGH] can be expressed as,

AGI‘:U(T) = AGI‘:U,T2+ TZASISU B TASI‘:U (38)

By definition, AGNSLT1 and AGI(__)UITZare zero. Therefore,

AG, (1) = (T, — D)——7= (39)

onset,1 1

and
AG  (T) = (T Ty s 2T 40
I:U( ) _( 2 B ) Tanset,Z_TZ ( )
Finally,
AGN‘:,I,THWM - - RTonset,1ln(KN:I,Tmm) (41)
where
[N]Trmxztl
KN‘:,I,Tonset'l - (1, , (42)
Assuming that [U] is negligible at T it then
K = & (43

(]

=
a

,T
onset,1



K = WL (44)

T
" onset,1

AG1:U,TWM can be derived in a similar way (assuming that [N] is negligible at Tonset,Z)
and equals
= — 001
AG1<:,UT - RTonset,Zln( 0.99 ) (49)

" onset,2

To summarise, T1 is the temperature where AGNH[ equals zero, T2 is the temperature
where AGF_U equals zero, Tonset1 is the temperature where 99 % of the protein is in
the folded state, and Tonset2 is the temperature where 99 % of the protein is in the

intermediate state.



Packages

MoltenProt (online version) is possible thanks to:

R language: R Core Team (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

R package shiny: Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan
McPherson (2020). shiny: Web Application Framework for R. R package version

1.4.0.2. https://CRAN.R-project.org/package=shiny

R package viridis: Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib’.
R package version 0.5.1. https://CRAN.R-project.org/package=viridis

R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse. Journal of
Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical Math
Functions. R package version 2.2.9. https://CRAN.R-project.org/package=pracma
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shinydashboard: Create Dashboards with 'Shiny'. R package version 0.7.1.
https://CRAN.R-project.org/package=shinydashboard

R package ggplot2:  H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.

R package xlIsx: Adrian Dragulescu and Cole Arendt (2020). xIsx: Read, Write,
Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.3.
https://CRAN.R-project.org/package=xlsx

R package reshape2: Hadley Wickham (2007). Reshaping Data with the reshape
Package. Journal of  Statistical Software, 21(12), 1-20. URL

http://www.jstatsoft.org/v21/i12/.

R package tippy: John Coene (2018). tippy: Add Tooltips to 'R markdown'
Documents or 'Shiny' Apps. R package version 0.0.1.
https://CRAN.R-project.org/package=tippy

R package shinyalert:  Pretty Popup Messages (Modals) in 'Shiny'. R package
version 1.1. https://CRAN.R-project.org/package=shinyalert
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tableHTML: A Tool to Create HTML Tables. R package version 2.0.0.

https://CRAN.R-project.org/package=tableHTML
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R package remotes: Jim Hester, Gabor Csardi, Hadley Wickham, Winston Chang,
Martin Morgan and Dan Tenenbaum (2020). remotes: R Package Installation from
Remote Repositories, Including 'GitHub'. R package version 2.1.1.

https://CRAN.R-project.org/package=remotes

R package devtools: Hadley Wickham, Jim Hester and Winston Chang (2020).
devtools: Tools to Make Developing R Packages Easier. R package version 2.3.0.
https://CRAN.R-project.org/package=devtools

R package shinyjs: Dean Attali (2020). shinyjs: Easily Improve the User Experience
of Your Shiny Apps in Seconds. R package version 1.1.

https://CRAN.R-project.org/package=shinyjs

R package data.table: Matt Dowle and Arun Srinivasan (2019). data.table:
Extension of data.frame. R package version 1.12.8.
https://CRAN.R-project.org/package=data.table

R package reticulate: Kevin Ushey, JJ Allaire and Yuan Tang (2020). reticulate:
Interface to 'Python’. R package version 1.16.

https://CRAN.R-project.org/package=reticulate

R package shinycssloaders: Andras Sali and Dean Attali (2020). shinycssloaders:
Add CSS Loading Animations to 'shiny' Outputs. R package version 0.3.
https://CRAN.R-project.org/package=shinycssloaders

Baptiste Auguie (2019). egg: Extensions for 'ggplot2': Custom Geom, Custom
Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size.

R package version 0.4.5. https://CRAN.R-project.org/package=eqqg

Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference
Manual. Scotts Valley, CA: CreateSpace.
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NumPy Array: A Structure for Efficient Numerical Computation, Computing in
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Python package pandas: Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010)

Python package scipy: Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
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Python package xIrd: https://xIrd.readthedocs.io/en/latest/index.html

Python package natsort: https://natsort.readthedocs.io/en/master/
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