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Overview 
MoltenProt has seven panels (Figure 1). Panels 1-3 contain the necessary steps to 
analyse the data. Panel 4 can be used to export the results of the analysis.  
 

 
Figure 1. Screenshot of MoltenProt sidebar. 

1. New features v1.1 

1.1. Barycentric mean 
 
When importing whole spectrum data generated by Applied Photophysics or 
Unchained Labs DSF instruments, the barycentric mean is also computed. This 
value is defined as: 
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where  is the intensity at wavelength .  We recommend using the barycenter for 𝐼

𝑖
λ

𝑖

qualitative studies (see Section ‘Signal to analyse’). 

1.2. Singular value decomposition (SVD) 
 
When importing whole spectrum data, a new menu can be opened by pressing the 
‘Show full spectrum menu’ button. Inside that menu, we can apply, separately for 
each sample, singular value decomposition. Briefly, the spectra at the different 
temperatures are decomposed as a linear combination of basis spectra as follows: 
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where  is the temperature, each  is a basis spectrum and  are the associated 𝑡 ϕ

𝑖
𝑐

𝑖

coefficients. The basis spectra are orthogonal to each other and have unit norm. 
Typically, in differential scanning fluorimetry datasets, a few basis spectra are 
relevant and explain most of the variance in the data. In MoltenProt, only the 
coefficients of the first and second basis spectra are returned for analysis.  

1.3. Native and unfolded baselines 
 
The baseline of the native and unfolded states are centered at 25°C, instead of 0 
Kelvin. For example, the signal produced by the folded state changed from  
 

​ ​ (3) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
𝑛
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to 
 

​ (4) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
𝑛
(𝑘

𝑛
Δ𝑇 + 𝑏

𝑛
)

 
where T is the temperature,  is the temperature minus the reference temperature Δ𝑇
293.15K (20°C),  is the fraction of native protein,  is the intercept term, and  is 𝑓

𝑛
𝑏

𝑛
𝑘

𝑛

the slope term. 
 
Moreover, the baselines for the folded and unfolded state can be modelled with a 
constant, linear, or quadratic equation: 
 

​ (5) 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓
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or 
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where  is the intercept,  is the linear term and  is the quadratic term.  𝑏

𝑛
𝑘

𝑛
𝑞

𝑛

1.4. Empirical models 
 

 
 



There are two new implementations for the empirical models (See Appendix for a 
mathematical derivation).  

1.5. Filters 
 
After the fitting is done, the results can be filtered based on  
 

a)​ A selected threshold for the relative errors of the fitted parameters 
b)​ A selected threshold for the standard error of the fitting 
c)​ Minimum and maximum values for certain parameters (Tm, Tonset, ΔH, etc.) 

2. Data import and processing 

2.1. Input file (raw data) 
 
MoltenProt can parse several types of files:  
 

A)​ The xlsx file (processed) generated by the Nanotemper Prometheus 
instrument that has one sheet called 'Overview' with a column called 'Sample 
ID' with the names of the samples (Figure 2), and four sheets called 'Ratio', 
'330nm', '350nm' and 'Scattering'. The first column of the signal sheet ('Ratio', 
'330nm', '350nm', 'Scattering') should be called 'Time [s]'. The second column 
should have the temperature data and all subsequent columns store the 
fluorescence data (Figure 3). The order of the fluorescence columns should 
match the order of the 'Sample ID' column in the 'Overview' sheet.  
 

 

 
 



Figure 2. Example of the ‘SampleID’ column in the ‘Overview’ sheet required by MoltenProt 
to load the Nanotemper spreadsheet input file. 

 

 
Figure 3. Example of the ‘Ratio’ sheet required by MoltenProt to load the Nanotemper 
spreadsheet input file. 
 

B)​ The xls file generated by the ThermoFluor assay in a qPCR instrument. This 
file has one sheet called 'RFU' where the first row has the sample positions 
(header), the first column has the temperature data and all subsequent 
columns store the fluorescence data (Figure 4).  
 

 
Figure 4. Example of the ‘RFU’ sheet required by MoltenProt to load ThermoFluor data. 
 

C)​ The xlsx file generated by a Prometheus Panta instrument. This file has one 
sheet called ‘Overview’ with a column called 'Sample ID' with the names of 
the samples (Figure 2), and one sheet called ‘Data Export’ where all the data 
is stored (Figure 5). The ‘Data Export’ sheet columns should have the 
following order: 

 

 
 



Temperature capillary 1 ; Ratio capillary 1 ; … ; Temperature capillary 1 ; 350 
nm capillary 1 ; … ; Temperature capillary 1 ; 330 nm capillary 1 ; … ; 
Temperature capillary 1 ; scattering capillary 1 ; … ; Temperature capillary 2 ; 
Ratio capillary 2; … ;  Temperature capillary n ; Ratio capillary n. 

 
​ Columns whose names include "Derivative" ​​are not read. 
 

  
Figure 5. Example of the ‘Data Export’ sheet required by MoltenProt to load the Prometheus 
Panta spreadsheet input file. 

 
D)​ The text file (.txt) generated by a QuantStudio™ 3 System instrument (Figure 

6). Comments should be at the beginning of the file and start with ‘*’. The 
header is the first line with more than 6 words, i.e. ‘Well’, ‘Well Position’, … , 
‘Target Name’. The column number 2 has the sample IDs. The columns 
number 4 and 5 have the signal and temperature data.  

 

 
Figure 6. Example of the input file required by MoltenProt to load the QuantStudio™ 3 
System instrument  data. 
 

E)​ The xlsx file generated by the Nanotemper Prometheus Tycho instrument. 
This file has one sheet called ‘Results’ (with 6 columns named '#', 'Capillary 
label',..., 'Sample Brightness') (Figure 7), and one sheet called 'Profiles_raw' 
where the fluorescence data is stored. 

 
 



 

 
Figure 7. Example of the ‘Results’ sheet required by MoltenProt to retrieve the sample 
names. This example file was generated by the Nanotemper Prometheus Tycho instrument. 
 

The ‘Profiles_raw’ sheet columns should have the following structure (Figure 
8): 

 
​ One row with information about the recorded signal, e.g., ‘Ratio 350 nm / 330 
nm’,  ‘Brightness @ 330 nm’, ‘Brightness @ 350 nm’. 

One row with the capillary numbers. 
One row with the time, temperature and sample names. 
The remaining rows store the temperature and signal data. 

 

 
Figure 8. Example of the ‘Profiles_raw’ sheet required by MoltenProt to load the 
temperature and signal data. This example file was generated by the Nanotemper 
Prometheus Tycho instrument. 
 

F) The text file (.txt) generated by Agilent's MX3005P qPCR instrument. The 
data format is the following: 

 
Line 1:​ Header 
Line 2:​ Segment  2 Plateau  1 Well  1 
Line 3: ​ ROX 
Line 4:​ 1          1706       25.0 
Line 5:​ 2          2581       25.8 
Line n:​ 70​       4845​  93.7  
Line n+1:​ Segment  2 Plateau  1 Well  2 
Line n+2:​ ROX 
Line n+3:​ 1​       1707​  25.0 
 

 
 



The data of each well is separated by rows containing the sentence ‘Segment  No 
Plateau  No Well  No’. The rows after the line with ‘ROX’ contain the fluorescence 
and temperature data (second and third columns respectively). 
 
​ G) The JSON file (.supr) exported by the SUPR-DSF instrument software 
from AppliedPhotophysics (https://www.photophysics.com/product-pages/supr-dsf/). 
 
The JSON file should have the following structure: 
 

●​ An item called 'Samples' that contains: 
 

●​ A sub-item called 'SampleName' 
●​ A sub-item called 'WellLocations' 

 
●​ An item called 'Wells' that contains: 

 
●​ A sub-item called '_scans' 
●​ A sub-item called 'PhysicalLocation' 

 
●​ An item called 'Wavelengths' 

 
Additionally, within the '_scans' sub-item, there are further sub-items called: 

●​ 'Temperature' 
●​ 'Signal' 

 
Below you’ll find a minimal example. 
 
{ 
  "Samples": [ 
    { 
      "SampleName": "SampleA1", 
      "WellLocations": "A1" 
    } 
  ], 
  "Wells": [ 
    { 
      "_scans": [ 
        { 
          "Temperature": 20, 
          "Signal": [ 
            7993, 
            9579, 
            10742 
          ] 
        }, 
        { 
          "Temperature": 30, 
          "Signal": [ 
            8993, 
            10579, 
            11742 
          ] 
        } 

 
 

https://www.photophysics.com/product-pages/supr-dsf/


      ], 
      "PhysicalLocation": "A1" 
    } 
  ], 
  "Wavelengths": [ 
    310, 
    311, 
    312 
  ] 
} 

 
After loading the file, the temperature data will be interpolated using steps of 0.5 
degrees. Additionally, if there is wavelength data near 330 nm and 350 nm, the 'Ratio 
350nm / 330nm' will be automatically calculated and available for further analysis. 
 
H) A csv file with the temperature data in the first column and the signal data in the 
subsequent columns. The condition labels are read from the header. 
 

 
Figure 9. Example of a csv file that can be imported into MoltenProt. 
 
I) The spreadsheet file (.xlsx) exported by the UNCLE instrument. In this file, there is 
one sheet per measured condition. The name of the condition is extracted from the 
cell located in the first row and fifth column. The second row has the temperature 
data in the format ‘Temp: xx, Time: xx’. The signal matrix starts at the fifth row, 
second column. The wavelength data is in the first column. 
 

 
 



 
Figure 10. Example of one sheet from the UNCLE xlsx file.  
 
J) The spreadsheet file (.xlsx) exported by the AUNTY instrument. In this file, there is 
one sheet per measured condition. The name of the condition is extracted from the 
sheet name. The first column has the temperature data, while the second row 
contains the wavelength data. The signal matrix starts at the third row, second 
column.  
 

 
Figure 11. Example of one sheet from the AUNTY xlsx file. 

2.2. Normalisation  
 
There are 3 available options to normalise each fluorescence-based melting curve. 
 

a.​ Divide by initial value: Divide by the median value of the signal corresponding 
to the first two degrees of temperature. 
 

b.​ Max-min normalisation: Transform the signal by applying 
 

​ (8) 𝑦
𝑛𝑜𝑟𝑚

(𝑦) = 𝑦 − 𝑚𝑖𝑛(𝑦)
𝑚𝑎𝑥(𝑦)−𝑚𝑖𝑛(𝑦)

 

 
 



c.​ Area normalisation: Divide the signal by the area under the curve (calculated 
using the trapezoidal rule). 

2.3. Median filter (smoothing) 
 
The median filter consists of calculating the median value of a temperature rolling 
window. 

2.4. Savitzky-Golay (SG) window size 
 
This parameter, in degrees Celsius, is used to calculate the number of data points to 
apply the Savitzky-Golay filter corresponding to a polynomial of degree 4 before 
computing the first or second derivative as implemented in Scipy 
(scipy.signal.savgol_filter — SciPy v1.6.1 Reference Guide). For the second 
derivative, we add 5 degrees to the selected SG temperature window size. 
 
The number of data points  is obtained by computing 𝑛(𝑤)
 

 ​ (9) 𝑛(𝑤) = 𝑐𝑒𝑖𝑙( 𝑤
Δ𝑇 ) // 2 *  2 +  1

 
where  is the SG parameter fixed by the user,  returns the smallest integer 𝑤 𝑐𝑒𝑖𝑙(𝑥) 𝑖
such that , and  corresponds to the average number of data points in one 𝑖 >= 𝑥 Δ𝑇
degree of temperature. 

2.5. Melting temperature (Tm) estimation using the first derivative 
 
A non-model approach to estimate the melting temperature involves estimating the 
maximum or the minimum of the first derivative, depending on the way the signal 
changes with the temperature. In MoltenProt, the Tm values are estimated as 
follows. First, the median value of the first derivative in the interval 

 and [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 6; 𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 11]
 is calculated. Then, we obtain [𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 11; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 6]

the mean of those two median values and add it (if it positive), or subtract it (if it is 
negative), to the first derivative in the interval 

. This is done to shift the derivative [𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 6; 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) − 6]
baseline. Last, if the absolute value of the minimum (of the derivative) is higher than 
the absolute value of the maximum, we use the minimum to estimate the Tm. 
Otherwise, we use the maximum. If many curves are present, we always use the 
same option. 

 
 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html


3. Fitting 

3.1. Signal to analyse 
 
There are several fluorescence changes that can be monitored, such as the 
fluorescence intensity at a given excitation and emission wavelengths, the quantum 
yield, the emission maximum, the fluorescence lifetime, the ratio of fluorescence 
intensities at two different emission wavelengths, etc. (Maurice R. Eftink et al., 1994). 
To be able to reliably estimate thermodynamic parameters, the signal must be 
related to the mole fractions of the different species. The most straightforward 
approach is to use extensive properties that are proportional to the amount of 
material in the system (Hugues Bedouelle, 2016). This way, the observed signal can 
be expressed as a linear combination of the signals of the different species weighted 
by their mole fractions.  
 
The fluorescence intensity at a given excitation and emission wavelengths is an 
extensive property and can be used to monitor unfolding as described above. 
However, the emission maximum, or the ratio signal, defined as the ratio of the 
fluorescence intensities at two different emission wavelengths, are not extensive 
properties and using them may result in unreliable estimates (Hugues Bedouelle, 
2016; Gabriel Žoldák, 2017).  

3.2. Model selection 
 
The models presented here assume that the fluorescence signal can be expressed 
as a linear combination of the signal produced by the different protein states. The 
difference in the models lies in establishing which are the possible states and how to 
calculate their concentration. The Python functions are available at Github. 
 

​ Equilibrium (or Empirical) two-state model 𝑁 ⇔ 𝑈
 

​ Equilibrium (or Empirical) three-state model 𝑁 ⇔ 𝐼 ⇔ 𝑈
 

​​ Irreversible two-state model 𝑁 ⇒ 𝑈
 
Furthermore, there can be no fluorescence dependence on temperature, a linear 
dependence, or a quadratic dependence 
 

 
 

https://github.com/SPC-Facility-EMBL-Hamburg/differentialScanningFluorimetryApps/blob/main/appFiles/MoltenProt/models.py


Equilibrium two-state1,2 
 
This thermodynamic-based model presupposes that the protein only exists in the 
native (folded) or unfolded state and that there is an equilibrium between these two 
states given by the unfolding reaction N ⇆ U.The fluorescence signal  is 𝐹(𝑇)
described by the equation 
 

​ (10) 𝐹(𝑇) = 𝑓
𝑛
(𝑞

𝑛
∆𝑇2 + 𝑘

𝑛
∆𝑇 + 𝑏

𝑛
) + 𝑓

𝑢
(𝑞

𝑢
∆𝑇2 + 𝑘

𝑢
∆𝑇 + 𝑏

𝑢
)

 
where , , are the quadratic, linear and constant terms of the pre-transition 𝑞

𝑛
𝑘

𝑛
𝑏

𝑛

baseline (native), , and are the quadratic, linear and constant terms of the 𝑞
𝑢

𝑘
𝑢

𝑏
𝑢

post-transition (unfolded) baseline,  is the fraction of protein in the native state and 𝑓
𝑛

 is the fraction of protein in the denatured state.  is calculated as  𝑓
𝑢

𝑓
𝑛

 

​(11) 𝑓
𝑛
(𝑇) = (1 + 𝐾

𝑢
)−1

 
where  
 

​ (12) 𝐾
𝑢
(𝑇) = 𝑒−∆𝐺 / 𝑅𝑇

 
and 
 

 ​ (13) ∆𝐺(𝑇) = ∆𝐻
𝑚

(1 − 𝑇
𝑇

𝑚
) −  ∆𝐶

𝑝
(𝑇

𝑚
 −  𝑇 +  𝑇 𝑙𝑛( 𝑇

𝑇
𝑚

)))

 
where R is the universal gas constant,  is the enthalpy of unfolding at the melting ∆𝐻

𝑚

temperature , and  is the heat capacity of unfolding.  is not fitted and 𝑇
𝑚

∆𝐶
𝑝

∆𝐶
𝑝

assumed to be zero. If the User has knowledge about that value, it can be used to 
correct the calculated Gibbs energy of unfolding at the standard temperature. 
 
Figure 12 shows a simulation of the model. 

2 Bedouelle, H. (2016). Principles and equations for measuring and interpreting protein stability: From 
monomer to tetramer. Biochimie, 121, 29-37. 
 

1 Santoro, M. M., & Bolen, D. W. (1988). Unfolding free energy changes determined by the linear 
extrapolation method. 1. Unfolding of phenylmethanesulfonyl. alpha.-chymotrypsin using different 
denaturants. Biochemistry, 27(21), 8063-8068. 
 

 
 



 
Figure 12. Simulated signal of the Equilibrium two-state unfolding model. The following 
parameters were used: , , , , , ∆𝐻 = 100 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 𝑇
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Empirical two-state v1.1 
 
This model is similar to the Equilibrium two-state, but instead of enthalpy of 
unfolding, it uses the parameter  to model the steepness of the fluorescence 𝑇

𝑜𝑛𝑠𝑒𝑡

curve. The signal is described by the same expression as Equation 10, with the 
difference that  is calculated as follows:  ∆𝐺(𝑇)
 

​ (14) ∆𝐺(𝑇) =
(𝑇

𝑚
−𝑇)(𝑅𝑇

𝑜𝑛𝑠𝑒𝑡
𝑙𝑛(0.01/0.99))

𝑇
𝑜𝑛𝑠𝑒𝑡

 − 𝑇
𝑚

 
Figure 13 shows a simulation of the model. 
 

 
 



 
 
Figure 13. Simulated signal of the Empirical two-state unfolding model. The following 
parameters were used: , , , , , 𝑇

𝑜𝑛𝑠𝑒𝑡
= 50. 15°𝐶 𝑇

𝑚
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𝑢
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=  − 0. 002

Figure 12.   
 
Equilibrium three-state3 
 
This model adds the presence of one short-lived protein state: native (N), 
intermediate (I) and unfolded (U). The fluorescence signal is described by the 
equation: 
 

​ (15) 𝐹(𝑇) = 𝑓
𝑛
(𝑞

𝑛
∆𝑇2 + 𝑘

𝑛
∆𝑇 + 𝑏

𝑛
) + 𝑓

𝑢
(𝑞

𝑢
∆𝑇2 + 𝑘

𝑢
∆𝑇 + 𝑏

𝑢
) + 𝑓

𝑖
𝑏

𝑖

 
where 
 

 is the fraction of protein in the intermediate state, and  is the signal produced by 𝑓
𝑖

𝑏
𝑖

the intermediate state (no dependence on temperature is included). 
 
There are two unfolding equilibria, N ⇆ I and I ⇆ U. The respective equilibrium 
constants  and  are calculated using Equation 12.  is set to zero in both 𝐾

1
𝐾

2
∆𝐶

𝑝

cases. As a result, the model contains four thermodynamic parameters.  and  𝑇
1

∆𝐻
1

for the first reaction, and  and  for the second one. ,  and  are given by: 𝑇
2

∆𝐻
2

𝑓
𝑛

𝑓
𝑖

𝑓
𝑢

3 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z. (2017). 
Exploration of protein unfolding by modelling calorimetry data from reheating. Scientific reports, 7(1), 
1-14. 
 

 
 



 
​ (16) 𝑓

𝑛
= 1

1+𝐾
1
+𝐾

1
𝐾

2

 

​ (17) 𝑓
𝑖

=
𝐾

1

1+𝐾
1
+𝐾

1
𝐾

2

 

​ (18) 𝑓
𝑢

=
𝐾

1
𝐾

2

1+𝐾
1
+𝐾

1
𝐾

2

 
Figure 14 shows a simulation of the model. 
 

 
Figure 14. Simulated signal of the Equilibrium three-state unfolding model. The following 
parameters were used: , , , , , ∆𝐻
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Empirical three-state v1.1 
 
This model is similar to the Equilibrium three-state, but instead of enthalpy of 
unfolding, it uses the parameters  and  to model the steepness of the 𝑇

𝑜𝑛𝑠𝑒𝑡,1
𝑇
𝑜𝑛𝑠𝑒𝑡,2

two transitions: 
 

​ (19) ∆𝐺
𝑁⇆𝐼

(𝑇) =  (𝑇
1
 −  𝑇) (𝑅 𝑇

𝑜𝑛𝑠𝑒𝑡,1
𝑙𝑛( 0.01

0.99 )) / (𝑇
𝑜𝑛𝑠𝑒𝑡,1

 −  𝑇
1
)

 
​ (20) ∆𝐺

𝐼⇆𝑈
(𝑇) =  (𝑇

2
 −  𝑇) (𝑅 𝑇

𝑜𝑛𝑠𝑒𝑡,2
𝑙𝑛( 0.01

0.99 )) / (𝑇
𝑜𝑛𝑠𝑒𝑡,2

 −  𝑇
2
)

 
 



 
Figure 15 shows a simulation of the model. 
 

 
Figure 15. Simulated signal of the Empirical three-state unfolding model. The following 
parameters were used: , , , , , 𝑇

𝑜𝑛𝑠𝑒𝑡,1
= 50. 16°𝐶 𝑇

1
= 55°𝐶 𝑏

𝑛
= 100 𝑏

𝑖
= 75 𝑏

𝑢
= 50

, , , and , , 𝑘
𝑛

=  − 0. 001 𝑘
𝑢

=  − 0. 001 𝑞
𝑛

=  − 0. 002 𝑞
𝑢

=  − 0. 002 𝑇
𝑜𝑛𝑠𝑒𝑡,2

= 77. 37°𝐶

. The signal values are the same as in Figure 14.  𝑇
2

= 85°𝐶

 
Irreversible two-state4,5 
 
This model assumes that the protein only exists in the native (N) and unfolded (U) 
state and that the unfolding reaction is irreversible. The signal is described by the 
equation: 
 

​ (21) 𝐹(𝑇) = 𝑥
𝑛
(𝑞

𝑛
∆𝑇2 + 𝑘

𝑛
∆𝑇 + 𝑏

𝑛
) + (1 − 𝑥

𝑛
)(𝑞

𝑢
∆𝑇2 + 𝑘

𝑢
∆𝑇 + 𝑏

𝑢
)

 
where is the fraction of natively folded molecules as a function of temperature 𝑥

𝑛
(𝑇)

and can be obtained via numerical integration: 
 

​ (22) 𝑥
𝑛
(𝑇) =

𝑇
𝑚𝑖𝑛

𝑇
𝑚𝑎𝑥

∫ −1
𝑣 * 𝑒𝑥𝑝(

−𝐸
𝑎

𝑅 ( 1
𝑇 − 1

𝑇
𝑓

) * 𝑥
𝑛
)

5 Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential scanning 
calorimetry. Biophysical journal, 61(4), 921-935. 

4 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z. (2017). 
Exploration of protein unfolding by modelling calorimetry data from reheating. Scientific reports, 7(1), 
1-14. 
 

 
 



 
where  and  are the start and end temperatures of the measurement,  is 𝑇

𝑚𝑎𝑥
𝑇

𝑚𝑖𝑛
 𝑣

the scan rate in degrees/minutes, is the activation energy of unfolding,  is the 𝐸
𝑎

𝑇
𝑓

temperature where the reaction rate constant of unfolding equals 1. For simplicity, 𝑥
𝑛

is assumed to be 1 at . 𝑇
𝑚𝑖𝑛

 
Figure 16 shows a simulation of the model. 
 

 
Figure 16. Simulated signal of the Irreversible three-state unfolding model. The following 
parameters were used: , , , , , 𝑇

𝑓
= 80°𝐶 𝐸

𝑎
= 35 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 𝑏

𝑛
= 100 𝑏

𝑢
= 50 𝑘

𝑛
=  − 0. 001

, , and . 𝑘
𝑢

=  − 0. 001 𝑞
𝑛

=  − 0. 002 𝑞
𝑢

=  − 0. 002

 

3.3. Temperature range for baseline estimation 
 
The initial values of the parameters , , , , ,  are estimated by fitting the 𝑞

𝑛
𝑘

𝑛
𝑏

𝑛
𝑞

𝑢
𝑘

𝑢
𝑏

𝑢

first or last n-degrees (selected by the user). If ‘quadratic’ baselines are used, a 
polynomial of second degree is used. If ‘linear’ baselines are used, the equation of a 
line is used. If no dependence on temperature is modelled, the average value is 
used. 
 

3.4. Curve fitting 
 
Each curve is fitted individually using the Levenberg Marquardt (damped 
least-squares) algorithm as implemented in the curve_fit function from the Scipy 
package.  

 
 



3.5. Fitting errors 
 
The standard deviation of all fitted parameters is computed using the square root of 
diagonal values from the fit parameter covariance matrix reported by scipy.curve_fit 
function. These values are an underestimation of the true errors.  

3.6. Fitting residuals 
 
The residuals of the fitting are normalized by dividing them by the standard error. 

4. Analyse 

4.1. Protein stability score 
 
After fitting a model, a protein stability score is provided which can be used to sort 
the conditions. 
 
Model Score 
Equilibrium two-state  Δ𝐺 𝑜𝑓 𝑢𝑛𝑓𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑡 298. 15 𝐾

 
Empirical two-state  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒((𝑇

𝑚
; 𝑇

𝑂𝑛𝑠𝑒𝑡
), (0; 0))

 
Equilibrium three-state  Δ𝐺 𝑜𝑓 𝑢𝑛𝑓𝑜𝑙𝑑𝑖𝑛𝑔 𝑎𝑡 298. 15 𝐾
   (Δ𝐺 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑁 ⇆ 𝐼 + Δ𝐺 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐼 ⇆ 𝑈)

 
Empirical two-state  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒((𝑇

1
; 𝑇

𝑜𝑛𝑠𝑒𝑡,1
), (0; 0)) +

  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒((𝑇
2
; 𝑇

𝑜𝑛𝑠𝑒𝑡,2
), (0; 0))

 
Irreversible two-state  − 𝑙𝑛(𝑘

𝑖𝑟𝑟𝑒𝑣
(298. 15 𝐾))

 

Contact details 
 
For further assistance, please contact us: 
 
​ 📧 spc@embl-hamburg.de 
​ 📌EMBL (c/o DESY), Notkestrasse 85, Build. 25a, 22607 Hamburg, Germany 
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Appendix 

Derivation of the Empirical Two-state v1.1 model 
 
We start by assuming that  and  are constant over the temperature range of ∆𝐻 ∆𝑆
interest.  at the temperature of melting  and onset temperature  is defined ∆𝐺 𝑇

𝑚
𝑇

𝑜𝑛𝑠𝑒𝑡

as: 
 

​ (23) ∆𝐺
𝑇

𝑚

= ∆𝐻 −  𝑇
𝑚

∆𝑆

 
​ (24) ∆𝐺

𝑇
𝑜𝑛𝑠𝑒𝑡

= ∆𝐻 −  𝑇
𝑜𝑛𝑠𝑒𝑡

∆𝑆

 
Using Equations (23) and (24), we have that 
 

​ (25) ∆𝑆 =
 ∆𝐺

𝑇
𝑚

 − ∆𝐺
𝑇

𝑜𝑛𝑠𝑒𝑡

 

𝑇
𝑜𝑛𝑠𝑒𝑡

 − 𝑇
𝑚

 

 
 at any given temperature  is calculated as: ∆𝐺 𝑇

 
​ (26) ∆𝐺(𝑇) = ∆𝐻 −  𝑇∆𝑆 

 
 



 
Substituting , ∆𝐻
 

​ (27) ∆𝐺(𝑇) = ∆𝐺
𝑇

𝑚

+ 𝑇
𝑚

∆𝑆 −  𝑇∆𝑆

 
Given that equals zero, ∆𝐺

𝑇
𝑚

 
​ (28) ∆𝐺(𝑇) = (𝑇

𝑚
− 𝑇)∆𝑆

 
Substituting , ∆𝑆
 

 ​ (29) ∆𝐺(𝑇) = (𝑇
𝑚

− 𝑇)
  − ∆𝐺

𝑇
𝑜𝑛𝑠𝑒𝑡

 

𝑇
𝑜𝑛𝑠𝑒𝑡

 − 𝑇
𝑚

 
Finally, corresponds to the temperature where 1 % of the protein is unfolded ∆𝐺

𝑇
𝑜𝑛𝑠𝑒𝑡

and 99 % is folded: 
 

​ (30) ∆𝐺
𝑇

𝑜𝑛𝑠𝑒𝑡

=  − 𝑅𝑇
𝑜𝑛𝑠𝑒𝑡

𝑙𝑛( 0.01
0.99 )

Derivation of the Empirical Three-state v1.1 model 
 
We start by assuming that , ,  and   are constant over the ∆𝐻

𝑁⇆𝐼
∆𝑆

𝑁⇆𝐼
∆𝐻

𝐼⇆𝑈
∆𝑆

𝐼⇆𝑈

temperature range of interest.  and  at the temperature of transition (  ∆𝐺
𝑁⇆𝐼

∆𝐺
𝐼⇆𝑈

𝑇
1

and ) and onset temperature (  and ) are defined as: 𝑇
2

𝑇
𝑜𝑛𝑠𝑒𝑡,1

𝑇
𝑜𝑛𝑠𝑒𝑡,2

 
​ ​ (31) ∆𝐺

𝑁⇆𝐼,𝑇
1

= ∆𝐻
𝑁⇆𝐼

 −  𝑇
1
∆𝑆

𝑁⇆𝐼

 
​ (32) ∆𝐺

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

= ∆𝐻
𝑁⇆𝐼

 −  𝑇
𝑜𝑛𝑠𝑒𝑡,1

∆𝑆
𝑁⇆𝐼

 
​ ​ (33) ∆𝐺

𝐼⇆𝑈,𝑇
2

= ∆𝐻
𝐼⇆𝑈

 −  𝑇
2
∆𝑆

𝐼⇆𝑈

 
​ (34) ∆𝐺

𝐼⇆𝑈,𝑇
𝑜𝑛𝑠𝑒𝑡,2

= ∆𝐻
𝐼⇆𝑈

 −  𝑇
𝑜𝑛𝑠𝑒𝑡,2

∆𝑆
𝐼⇆𝑈

 
If we combine Equations 31 and 32, and Equations 33 and 34, 
 

 
 



​ (35) ∆𝑆
𝑁⇆𝐼

=
 Δ𝐺

𝑁⇆𝐼,𝑇
1

− Δ𝐺
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

𝑇
𝑜𝑛𝑠𝑒𝑡,1

 − 𝑇
1

 

 

​ (36) ∆𝑆
𝐼⇆𝑈

=
 Δ𝐺

𝐼⇆𝑈,𝑇
2

− Δ𝐺
𝐼⇆𝑈,𝑇

𝑜𝑛𝑠𝑒𝑡,2

𝑇
𝑜𝑛𝑠𝑒𝑡,2

 − 𝑇
2

 

 
Then  at any given temperature  can be written as,   ∆𝐺

𝑁⇆𝐼
𝑇

 
 ​ (37) ∆𝐺

𝑁⇆𝐼
(𝑇) = ∆𝐺

𝑁⇆𝐼,𝑇
1

+ 𝑇
1
∆𝑆

𝑁⇆𝐼
 −  𝑇∆𝑆

𝑁⇆𝐼

 
and  can be expressed as, ∆𝐺

𝐼⇆𝑈

 
 ​ (38) ∆𝐺

𝐼⇆𝑈
(𝑇) = ∆𝐺

𝐼⇆𝑈,𝑇
2

+ 𝑇
2
∆𝑆

𝐼⇆𝑈
 −  𝑇∆𝑆

𝐼⇆𝑈

 
By definition,  and are zero. Therefore, ∆𝐺

𝑁⇆𝐼,𝑇
1

∆𝐺
𝐼⇆𝑈,𝑇

2

 

 (39) ∆𝐺
𝑁⇆𝐼

(𝑇) = (𝑇
1

− 𝑇)
 − Δ𝐺

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

𝑇
𝑜𝑛𝑠𝑒𝑡,1

 − 𝑇
1

 

 
and 

 

 ​(40) ∆𝐺
𝐼⇆𝑈

(𝑇) = (𝑇
2
 −  𝑇)

 − Δ𝐺
𝐼⇆𝑈,𝑇

𝑜𝑛𝑠𝑒𝑡,2

𝑇
𝑜𝑛𝑠𝑒𝑡,2

 − 𝑇
2

 
 
Finally, 
 
 

​(41) Δ𝐺
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

=  − 𝑅𝑇
𝑜𝑛𝑠𝑒𝑡,1

𝑙𝑛(𝐾
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

) 

 
where 
 

​ (42) 𝐾
𝑁⇆𝐼,𝑇

𝑜𝑛𝑠𝑒𝑡,1

=  
[𝑁]

𝑇
𝑜𝑛𝑠𝑒𝑡,1

[𝐼]
𝑇

𝑜𝑛𝑠𝑒𝑡,1

 

 
 
Assuming that  is negligible at , then [𝑈] 𝑇

𝑜𝑛𝑠𝑒𝑡,1

 
  ​ (43) 𝐾

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

=  [𝑁]
[𝐼]

 
 



 
  ​ (44) 𝐾

𝑁⇆𝐼,𝑇
𝑜𝑛𝑠𝑒𝑡,1

=  0.01
0.99

 
can be derived in a similar way (assuming that  is negligible at ) Δ𝐺

𝐼⇆𝑈,𝑇
𝑜𝑛𝑠𝑒𝑡,2

 [𝑁] 𝑇
𝑜𝑛𝑠𝑒𝑡,2

and equals 
 

​ (45) Δ𝐺
𝐼⇆𝑈,𝑇

𝑜𝑛𝑠𝑒𝑡,2

=  − 𝑅𝑇
𝑜𝑛𝑠𝑒𝑡,2

𝑙𝑛( 0.01
0.99 ) 

 
To summarise,  is the temperature where  equals zero,  is the temperature 𝑇

1
Δ𝐺

𝑁⇆𝐼
𝑇

2

where  equals zero,  is the temperature where 99 % of the protein is in Δ𝐺
𝐼⇆𝑈

𝑇
𝑜𝑛𝑠𝑒𝑡,1

the folded state, and  is the temperature where 99 % of the protein is in the 𝑇
𝑜𝑛𝑠𝑒𝑡,2

intermediate state.          
 

 
 



Packages 
 
MoltenProt (online version) is possible thanks to:  
 
R language: R Core Team (2020). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/. 
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McPherson (2020). shiny: Web Application Framework for R. R package version 
1.4.0.2. https://CRAN.R-project.org/package=shiny 
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R package version 0.5.1. https://CRAN.R-project.org/package=viridis 
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https://CRAN.R-project.org/package=shinydashboard 
 
R package ggplot2:   H. Wickham. ggplot2: Elegant Graphics for Data Analysis. 
Springer-Verlag New York, 2016. 
 
R package xlsx:   Adrian Dragulescu and Cole Arendt (2020). xlsx: Read, Write, 
Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.3. 
https://CRAN.R-project.org/package=xlsx 
 
R package reshape2:   Hadley Wickham (2007). Reshaping Data with the reshape 
Package. Journal of Statistical Software, 21(12), 1-20. URL 
http://www.jstatsoft.org/v21/i12/. 
 
R package tippy:   John Coene (2018). tippy: Add Tooltips to 'R markdown' 
Documents or 'Shiny' Apps. R package version 0.0.1. 
https://CRAN.R-project.org/package=tippy 
 
R package shinyalert:   Pretty Popup Messages (Modals) in 'Shiny'. R package 
version 1.1. https://CRAN.R-project.org/package=shinyalert 
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plotly, and shiny. Chapman and Hall/CRC Florida, 2020. 
 
R package tableHTML:   Theo Boutaris, Clemens Zauchner and Dana Jomar (2019). 
tableHTML: A Tool to Create HTML Tables. R package version 2.0.0. 
https://CRAN.R-project.org/package=tableHTML 
 
R package rhandsontable:   Jonathan Owen (2018). rhandsontable: Interface to the 
'Handsontable.js' Library. R package version 0.3.7. 
https://CRAN.R-project.org/package=rhandsontable 
 
R package remotes:   Jim Hester, Gábor Csárdi, Hadley Wickham, Winston Chang, 
Martin Morgan and Dan Tenenbaum (2020). remotes: R Package Installation from 
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R package data.table:   Matt Dowle and Arun Srinivasan (2019). data.table: 
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 Baptiste Auguie (2019). egg: Extensions for 'ggplot2': Custom Geom, Custom 
Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size. 
R package version 0.4.5. https://CRAN.R-project.org/package=egg 
 
Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference 
Manual. Scotts Valley, CA: CreateSpace. 
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Python package numpy: Travis E, Oliphant. A guide to NumPy, USA: Trelgol 
Publishing, (2006). Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The 
NumPy Array: A Structure for Efficient Numerical Computation, Computing in 
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Python package pandas: Wes McKinney. Data Structures for Statistical Computing in 
Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010) 
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Python package xlrd: https://xlrd.readthedocs.io/en/latest/index.html 
 
Python package natsort: https://natsort.readthedocs.io/en/master/ 
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