
 

eSPC, an Online Data Analysis 
Platform for Molecular 

Biophysics  
 
 

Raynals 1.0  
User Documentation  

 

 
 

February 2026  

 



 

Table of Contents 
 
1. Load input 

1.1. Input file (raw data) 

1.2. Input parameters 

1.3. Filtering 

2. Fitting procedure 

​ 2.1. First order autocorrelation 

​ 2.2. Distribution of decay rates 

​ 2.3. Tikhonov-Philips regularised inversion 

​ 2.4. The L-curve criteria 

2.5. Selecting the values of α 

2.6. Finding the corner of the L-curve  
3. Fitting results  

3.1. Fitted autocorrelation 

3.2. Hydrodynamic radii distribution 

3.3. Peak parameters 

3.4. Regularisation terms 

4. Simulation 

​ 4.1. Number distribution 

​ 4.2. Volume distribution 

4.3. Intensity distribution 

4.4. Autocorrelation curves 

 

Contact details  

 



 

1. Load input 

1.1. Input file (raw data) 
Raynals accepts as input two types of files:  
 

A)​ Comma-separated-values file (.csv)  
 
The input file is a comma-separated-values (csv) file with headers. The first column 
contains time data, while the following columns contain the normalised second order 

autocorrelation ( ) data.  𝑔(2)(𝜏)
 

 
Figure 1. Example of the CSV format required to load data in the Raynals app. 
 

B)​ Compressed file (.zip or .7z) 
 
The input file is a compressed file containing multiple Excel files (.xlsx). There should 
be one file per sample. Within each Excel file, the DLS data, comprising the time and 
autocorrelation values, should be present in the first two columns. The first column's 
header must be either 'tau' or 'time'. Sample names will be read from the Excel file 
names.  
 
If you want to average acquisitions, use a directory structure similar to the one 
below. 

 
└── pH_4_proteinX  
    ├── Replicate 1 
    │   ├── Acquisition 1 
    │   │   ├── pH_4_proteinX - 1_acf.xlsx 
    │   ├── Acquisition 2 
    │   │   ├── pH_4_proteinX - 1_acf.xlsx 
    │   ├── Acquisition 3 
    │   │   ├── pH_4_proteinX - 1_acf.xlsx 
    └── Replicate 2 
        ├── Acquisition 1 

 



 

        │   ├── pH_4_proteinX - 2_acf.xlsx 
        ├── Acquisition 2 
        │   ├── pH_4_proteinX - 2_acf.xlsx 
        ├── Acquisition 3 
        │   ├── pH_4_proteinX - 2_acf.xlsx 

 
That directory structure will produce two final autocorrelation curves. Each of them 
consists of averaging three acquisitions. 
 
General details 
 
It’s important that the final autocorrelation data is one. Otherwise, it will be assumed 

that the DLS instrument exported  and we’ll add one. The time units can 𝑔(2)(𝜏) − 1
be either microseconds or seconds.  

1.2. Input parameters 
To fit the autocorrelation data we need to use information about the DLS instrument 
setup and the experimental conditions.  
 

 
Figure 2. Table with experimental and instrument parameters. 
 
Instrument parameters: ​ Laser wavelength (nm) and detection angle (degrees) 
Experimental parameters: Temperature (ºC), refractive index and viscosity 
(pascal-second). 
 
If you use a Wyatt Dynapro Plate Reader, the laser wavelength (nm) and detection 
angle (degrees) are 817 nm and 150°. For a Wyatt DynaPro NanoStar, use 658 nm 
and 90°. For a Nanotemper Prometheus Panta, use 405 nm and 145°. Regarding the 
temperature, refractive index and viscosity, we'll use as default 20°C, 1.33 (pure 
water) and 8.9e-4 pascal-second (pure water). 

1.3. Filtering 
 

 



 

Raw curves can be filtered by removing those with a lower intercept or a "bumpy" 
baseline to exclude samples with aggregates and/or buffers. Mathematically, the two 
filters can be expressed as: 
 

Filter 1:​ select curves if    ​ Equation 1 𝑔(2)(0) > 𝑃
1
 

 

Filter 2:​ select curves if ​ Equation 2 𝑔(2)(𝑃
2
) < 𝑃

3

 
where g(2) is the second-order autocorrelation data (raw curves), g(2)(0) is the value of 
g(2) at time zero, and g(2)(P2) is the value of g(2) at a certain time ‘P2’. The parameter 
value P1 from the first filter can be modified using the ‘Filter by initial value’ input 
field. The values of P2 and P3 are respectively modified using the ‘Time limit’ and 
‘Tolerance’ input fields. Examples of these filters are presented in the User Guide 
from the Raynals app. 

2. Fitting procedure 

Raynals fitting is based on a non-parametric distribution of decay rates. The data we 
actually fit is the first order correlation function g(1)(𝜏) which is related to the 
normalised second order correlation function through the Siegert Equation1: 
 

​ Equation 3 𝑔(2)(𝜏) = 1 + β|𝑔(1)(𝜏)|
2

 
where  is the coherence factor that depends on the instrument and the scattering β
properties of macromolecules. 

2.1. First order autocorrelation 
To approximate , we fit a  polynomial of degree two to the DLS data at times shorter β
than five µs. This approach has been proven to work with both simulated and 
experimental data. Then, we calculate  by applying the Siegert Equation until 𝑔

1
(𝜏)

the first occurrence of g(2)(𝜏) < 1. 

2.2. Distribution of decay rates 

 can be represented by an intensity-weighted integral over a distribution of 𝑔(1)(𝜏)
decay rates G(Ⲅ)2: 
 

2 Xu, R. (2001). Particle characterization: light scattering methods (Vol. 13). Springer Science & 
Business Media. 

1 Siegert, A. J. F. (1943). On the fluctuations in signals returned by many independently moving 
scatterers Report: Radiation laboratory, Massachusetts Institute of Technology. 

 



 

​ Equation 4 𝑔(1)(𝜏) =
0

∞

∫ 𝐺(Ⲅ)𝑒
(−Ⲅ

𝜏
)
𝑑Ⲅ

 
where G(Ⲅ) is normalised such that 
 

 ​ ​ Equation 5​  
0

∞

∫ 𝐺(Ⲅ)𝑑Ⲅ = 1

 
Each decay rate is associated to a certain diffusion coefficient according to the 
following Equation: 
 

​​ Equation 6 𝐷(𝑠, 𝑞) = 1 / (𝑠𝑞2)  
 

where s is the inverse of the decay rate and q is the Bragg wave vector defined as: 
 

 Equation 7 𝑞(λ, η, θ) =  4ηπλ−1𝑠𝑖𝑛( θ
2 )

 
where λ, η, θ are respectively the wavelength of the incident light, the solvent 
refractive index and the detection angle. Finally, the diffusion factors (D) can be 
transformed to hydrodynamic radius (Rh): 
 

  ​​ Equation 8 𝑅ℎ(𝐷, 𝑇, μ) =
 𝑘

𝑏
𝑇

6πμ𝐷

 
where T and μ are respectively the temperature and viscosity, and  kb is the 
Boltzmann constant.  
 

2.3. Tikhonov-Philips regularised inversion 
Raynals fits the first-order autocorrelation data based on the Tinkohov regularised 
inversion3,4,5. For this purpose, we first obtain β by fitting a polynomial of degree two 
to the DLS data at times shorter than five µs. Then, we apply Equation 3 to calculate 
g1(𝜏). Due to the square power in this Equation, g1(𝜏) can be computed only when 

5 Brown, Patrick H., Andrea Balbo, and Peter Schuck. "Using prior knowledge in the determination of 
macromolecular size-distributions by analytical ultracentrifugation." Biomacromolecules 8.6 (2007): 
2011-2024. 
 

4 Provencher, Stephen W. "CONTIN: a general purpose constrained regularization program for 
inverting noisy linear algebraic and integral equations." Computer Physics Communications 27.3 
(1982): 229-242. 

3 Phillips, David L. "A technique for the numerical solution of certain integral equations of the first 
kind." Journal of the ACM (JACM) 9.1 (1962): 84-97. 

 



 

g(2)(𝜏) ≥ 1. Therefore, we only evaluate the data before the first occurrence of g(2)(𝜏) < 
1. 
 
After calculating g(1)(𝜏), we discretize the decay rate space by using n (n = 200) 
points between 0.1 and 1e6 nm log spaced in the hydrodynamic radius scale.  
 
The equation we need to fit becomes 
 

​ Equation 9 𝑔(1)(𝜏) =
𝑖=1

200

∑ 𝑐
𝑖
𝑒

(−𝜏 / 𝑠
𝑖
)
  

 
subject to the constraints  
 

​ Equation 10 ∀𝑖;  𝑐
𝑖

≥ 0,
𝑖=1

200

∑ 𝑐
𝑖
 = 1  

 
​​ ​ Equation 11 𝑐

1
= 𝑐

200
= 0

 
where ci is the i-th contribution of the i-th inverse decay rate (si). Due to the 
ill-condition nature of the problem (infinite possible solutions), we need to add a 
regularisation term, so we solve simultaneously the following equations  
 

 Equation 12 α
𝑖=2

199

∑ 2𝑐
𝑖
 −  𝑐

𝑖−1
 − 𝑐

𝑖+1
 = 0

 
where  α  is a regularisation parameter controlling how close the relative contribution 
of each (inverse) decay rate should be to its neighbouring (inverse) decay rates. The 
whole set of linear equations is solved together using scipy non-negative least 
squares solver (docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls).  
 
An alternative way of describing the set of linear equations from Equation 9 and 
Equation 12 is that we need to find the vector of relative contributions (x) such that 
 

  ​ Equation 13 𝑥
α

= 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝐴𝑥
α

− 𝑔(1)(𝜏)||
2

2
+ α||𝐿𝑥

α
||

2

2

 
where A is the kernel matrix with values  
 

  ​ Equation 14 𝑎
𝑖,𝑗

= 𝑒𝑥𝑝(− 𝜏
𝑖
γ

𝑗
)

 
where i and j iterate over the lag time vector and decay rate vector, respectively. L is 
the second-order derivative matrix. 

 



 

2.4. The L-curve criteria 

One way of finding an adequate value of α is to apply the L-curve criteria6. This 
heuristic rule consists of plotting the logarithm of the residuals (fidelity term, 

) against the logarithm of the norm of the regularised solution  ||𝐴𝑥
α

− 𝑔(1)(𝜏)||
2

2

(penalty term, ) for different values of α and selecting the value of α α||𝐿𝑥
α
||

2

2

corresponding to the corner point of the L-shaped curve. This method balances the 
size of the regularised solution and the accuracy of the fit to the given data.  

2.5. Selecting the values of α  
To generate the L-curve we need to test a wide range of different values of α. In 
Raynals, a sequence of regularisation parameters (α) evenly spaced in a log scale 
are evaluated. This sequence is generated using the following formula: 
 

 ​ Equation 15 α
𝑛
 = (5𝑓(𝑛))

2
 

 
where f(n) depends on three parameters called ‘start’, ‘stop’, ‘step’ and is defined as 
 

 Equation 16 𝑓(𝑛) = 𝑠𝑡𝑎𝑟𝑡 +  𝑛 * 𝑠𝑡𝑒𝑝 / 𝑛 = { 0, 1, 2,  ...  , ⌊(𝑠𝑡𝑜𝑝 − 𝑠𝑡𝑎𝑟𝑡)/𝑠𝑡𝑒𝑝⌋ }
 
The ‘start’, ‘stop’ and ‘step’ values can be changed in the ‘Analysis’ box from the 
‘Analysis’ Tab. The tested α values together with the corresponding fidelity and 
penalty terms can be downloaded in the ‘Export’ tab.  

2.6. Finding the corner of the L-curve  
To automatise the detection of the corner of the L-curve we used the triangle method 
proposed by Castellanos et al., 20027. Briefly, for each point (labelled ‘A’) in the 
log-log curve, we compute the angles created by all previous points (labelled ‘B’), the 
point ‘A’, and the last point (labelled ‘C’) (angle BAC). Then, we select the point ‘A’ 
that has the smallest angle.    

7 Castellanos, J. Longina, Susana Gómez, and Valia Guerra. "The triangle method for finding the 
corner of the L-curve." Applied Numerical Mathematics 43.4 (2002): 359-373. 

6 Hansen, Per Christian. "The L-curve and its use in the numerical treatment of inverse problems." 
(1999): 119-142. 

 



 

3. Fitting results 

3.1. Fitted autocorrelation 

The experimental second-order autocorrelation  is displayed as coloured dots, 𝑔(2)(𝜏)
while the predicted second-order autocorrelation (based on the fitting of the 

first-order autocorrelation ) is shown with black lines. The residuals of  𝑔(1)(𝜏) 𝑔(2)(𝜏)
can be used to filter the data (parameter ‘Residuals filter’).  

3.2. Hydrodynamic radii distribution 

The estimated distribution of hydrodynamic radii represents the intensity weighted 
contributions and can be visualised as an histogram, density plot, or grayscale 
coloured bar plot. The visualisation style can be changed using the ‘Plot type’ option 
in the ‘Analysis’ Tab. With the exception of the ‘Collapsed’ plot, the height of the 
y-axis is relative and can be determined by the ‘Relative’ height’ parameter. 

3.3. Peak parameters 

To retrieve the characteristic Rh the user must select certain intervals to analyse the 
Rh distribution (‘Peak selection’ box). Then, for each range of interest, a peak 
searching algorithm is used to find the highest peak. From this peak, we calculate 
the weighted harmonic mean8 (or peak maximum), the total relative contributions to 
the intensity, the standard deviation and, assuming perfect non-interacting spheres  
in a non-absorbing medium, the mass (or volume) weighted contribution.  

3.4. Regularisation terms 

If the L-curve criteria was used to fit the data, the ‘optimal’ automatically selected 
regularisation parameters are available in the ‘Regularisation terms’ Table. 

4. Simulation 
All generated data is based on non-interacting spherical particles surrounded by a 
non-absorbing medium. The minimum and maximum allowed hydrodynamic radius 
are 0.09 and 106 nm.  

4.1. Number distribution 
This distribution is directly determined by the parameters ‘Population mean’, 
‘Population sd’ and ‘Number of particles’. For each normally distributed population 
that we want to simulate (of a certain hydrodynamic radius), we should input its 
mean, standard deviation and the number of particles.  

8 Farkas, Natalia, and John A. Kramar. "Dynamic light scattering distributions by any means." Journal 
of Nanoparticle Research 23.5 (2021): 120. 

 



 

4.2. Volume distribution 
The volume distribution is derived from the number distribution by assuming that 
each particle is a sphere. Therefore, the volume depends on the cube of the Rh.  

4.3. Intensity distribution 
The intensity distribution is derived from the number distribution by assuming that 
each particle is a sphere and that the intensity scattered by each particle follows the 
Mie theory9. Also, particles do not interact with each other and the medium doesn’t 
absorb any of the scattered light. The parameters ‘angle of detection (°)’, 
‘wavelength (nanometers)’ and ‘refractive index (unitless)’ are required at this step.  
For small particles (size < wavelength/10), the amount of scattered light follows the 
Rayleigh Theory and scales to the sixth power of the radius10. The intensity values 
are calculated with the Mie python package11. 

4.4. Autocorrelation curves 
To generate the autocorrelation curves we first transform each Rh into a diffusion 
coefficient by using the selected ‘Temperature’ and ‘Viscosity’, and then into a decay 
rate according to the Bragg wave vector (which depends on the detection angle).  
Finally, based on the relative contributions of each decay rate to the intensity 
distribution, we apply Eq. 9 (first order autocorrelation) and subsequently Eq. 3 to 
obtain the second order autocorrelation function. The value at which this curve 
crosses the y-axis is determined by the ‘Intercept’ parameter which can only go from 
0 to 1. Gaussian error can be added based on the ‘Gaussian error’ parameter.  
 

Contact details 
 
For further assistance, please contact us: 
 
​ 📧 spc@embl-hamburg.de 
​ 📌EMBL (c/o DESY), Notkestrasse 85, Build. 25a, 22607 Hamburg, Germany 
 

 

11 https://miepython.readthedocs.io 

10 Seinfeld, John H., and Spyros N. Pandis. Atmospheric chemistry and physics: from air pollution to 
climate change. John Wiley & Sons, 2016. 

9 Wiscombe, W. J. (1979). Mie Scattering Calculations: Advances in Technique and Fast, 
Vector-speed Computer Codes (No. NCAR/TN-140+STR). University Corporation for Atmospheric 
Research. doi:10.5065/D6ZP4414 

 



 

Packages 
 
Raynals is possible thanks to:  
 
R language: R Core Team (2020). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/. 
 
R package shiny:   Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan 
McPherson (2020). shiny: Web Application Framework for R. R package version 
1.4.0.2. https://CRAN.R-project.org/package=shiny 
 
R package viridis: Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib'. 
R package version 0.5.1. https://CRAN.R-project.org/package=viridis 
 
R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse. Journal of 
Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686 
 
R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical Math 
Functions. R package version 2.2.9. https://CRAN.R-project.org/package=pracma 
 
R package shinydashboard:   Winston Chang and Barbara Borges Ribeiro (2018). 
shinydashboard: Create Dashboards with 'Shiny'. R package version 0.7.1. 
https://CRAN.R-project.org/package=shinydashboard 
 
R package ggplot2:   H. Wickham. ggplot2: Elegant Graphics for Data Analysis. 
Springer-Verlag New York, 2016. 
 
R package reshape2:   Hadley Wickham (2007). Reshaping Data with the reshape 
Package. Journal of Statistical Software, 21(12), 1-20. URL 
http://www.jstatsoft.org/v21/i12/. 
 
R package tippy:   John Coene (2018). tippy: Add Tooltips to 'R markdown' 
Documents or 'Shiny' Apps. R package version 0.0.1. 
https://CRAN.R-project.org/package=tippy 
 
R package shinyalert:   Pretty Popup Messages (Modals) in 'Shiny'. R package 
version 1.1. https://CRAN.R-project.org/package=shinyalert 
 
R package plotly:   C. Sievert. Interactive Web-Based Data Visualization with R, 
plotly, and shiny. Chapman and Hall/CRC Florida, 2020. 
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R package rhandsontable:   Jonathan Owen (2018). rhandsontable: Interface to the 
'Handsontable.js' Library. R package version 0.3.7. 
https://CRAN.R-project.org/package=rhandsontable 
 
R package shinyjs:   Dean Attali (2020). shinyjs: Easily Improve the User Experience 
of Your Shiny Apps in Seconds. R package version 1.1. 
https://CRAN.R-project.org/package=shinyjs 
 
R package reticulate:   Kevin Ushey, JJ Allaire and Yuan Tang (2020). reticulate: 
Interface to 'Python'. R package version 1.16. 
https://CRAN.R-project.org/package=reticulate 
 
R package shinycssloaders:   Andras Sali and Dean Attali (2020). shinycssloaders: 
Add CSS Loading Animations to 'shiny' Outputs. R package version 0.3. 
https://CRAN.R-project.org/package=shinycssloaders 
 
R package stringr: Wickham H (2022). stringr: Simple, Consistent Wrappers for 
Common String Operations. R package version 1.4.1, 
https://CRAN.R-project.org/package=stringr. 
 
R package Ciaro: Urbanek S, Horner J (2022). Cairo: R Graphics Device using Cairo 
Graphics Library for Creating High-Quality Bitmap (PNG, JPEG, TIFF), Vector (PDF, 
SVG, PostScript) and Display (X11 and Win32) Output. R package version 1.6-0, 
https://CRAN.R-project.org/package=Cairo. 
 
R package svglite: Wickham H, Henry L, Pedersen T, Luciani T, Decorde M, Lise V 
(2022). svglite: An 'SVG' Graphics Device. R package version 2.1.0, 
https://CRAN.R-project.org/package=svglite. 
 
R package RColorBrewer: Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. 
R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer. 
 
R package DT: Xie Y, Cheng J, Tan X (2022). DT: A Wrapper of the JavaScript 
Library 'DataTables'. R package version 0.25, 
https://CRAN.R-project.org/package=DT. 
 
R package scales: Wickham H, Seidel D (2022). scales: Scale Functions for 
Visualization. R package version 1.2.1, https://CRAN.R-project.org/package=scales. 
 
Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference 
Manual. Scotts Valley, CA: CreateSpace. 
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Python package numpy: Travis E, Oliphant. A guide to NumPy, USA: Trelgol 
Publishing, (2006). Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The 
NumPy Array: A Structure for Efficient Numerical Computation, Computing in 
Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37 
 
Python package pandas: Wes McKinney. Data Structures for Statistical Computing in 
Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010) 
 
Python package scipy: Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt 
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, 
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua 
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, 
Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake 
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. 
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian 
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: 
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 
261-272. 
 
Python package miepython: Prahl, S. "miepython v1. 3.0." (2017). 
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