

eSPC, an Online Data Analysis
Platform for Molecular

Biophysics

ThermoAffinity 1.0 User
Documentation

February 2026

Table of Contents

1. Load input

1.1. Input file (raw data)

1.2. Normalization

1.3. Median filter (smoothing)

1.4. Hot and cold region selection

2. Fitting

2.1. Model

2.2. Initial estimates and boundaries of the parameters

2.3. Curve fitting

2.4. Fitting errors

Contact details

Overview
ThermoAffinity has seven panels (Figure 1). Panels 1-2 contain the necessary steps
to analyse the user data. The Simulate data Panel can be used before doing an
experiment to analyze the expected change in the signal depending on the binding
affinity and the protein and ligand concentrations.

Figure 1. ThermoAffinity online tool panels.

1. Load input

1.1. Input file (raw data)

1) The spreadsheet exported by the Monolith instrument (Nanotemper). This file
contains one sheet called ‘RawData’ where the first column has different cells with
the following labels: ‘Capillary Position:’, ‘Ligand:’, ‘Ligand Concentration:’, and
‘Time [s]’ (Figure 2). Then, the second column stores the associated information: ‘1’,
‘ligand description’, ‘5000’, and ‘Raw Fluorescence [counts]’ (Figure 2). The next
capillary information is going to be read from columns 4 and 5, then from columns 7
and 8, etc.

Figure 2. Example of the spreadsheet required to load the MST experiment result into
ThermoAffinity.

2) A comma-separated-file (csv) file with or without a header and two columns
separated by spaces, commas, or semicolons. The first column has the ligand
concentration and the second the signal value. This file can have two additional
columns, namely, protein concentration, and/or experiment ID.

3) The csv file exported by the Dianthus instrument (Nanotemper). This file has
several columns, with the first column corresponding to the ligand ID, the second
column to the ligand concentration, and the fourth column the target concentration
(Figure 3). To extract the signal values, ThermoAffinity will search for columns with
the word "Ratio", "Initial Fluorescence" or "Initial Fluorescence 670 nm". The three
possible signals will be imported.

Figure 3. Example of the csv file exported by the Dianthus instrument from Nanotemper.

1.2. Normalization

The signal of each curve is divided by the mean value of the signal before the T-jump
(). 𝑡𝑖𝑚𝑒 <= 0

1.3. Median filter (smoothing)

The median filter calculates the median value of a temperature rolling window. We
recommend this filter only for visualization purposes.

1.4. Hot and cold region selection

The thermophoretic signal of the hot (FHot) and cold (FCold) regions are averaged to

get the values (). 𝐹𝑛𝑜𝑟𝑚
𝐹

𝐻𝑜𝑡

𝐹
𝐶𝑜𝑙𝑑

2. Fitting

2.1 Model
The models implemented in ThermoAffinity are useful for all cases where a signal
can be described by a linear combination of the unbound protein and complex. This
can be (thermophoresis shift) or the initial fluorescence. 𝐹𝑛𝑜𝑟𝑚 = 𝐹

ℎ𝑜𝑡
 / 𝐹

𝑐𝑜𝑙𝑑

The signal is fitted using a simple model where the contribution of the complex and
the unbound protein is given by the following equation:

​ ​ (1) 𝑆𝑖𝑔𝑛𝑎𝑙(𝐾
𝑑
, 𝐿

0
, 𝑃

0
) = 𝑅𝐹1 * 𝑃(𝐾

𝑑
, 𝐿

0
, 𝑃

0
) + 𝑅𝐹2 * 𝑃𝐿(𝐾

𝑑
, 𝐿

0
, 𝑃

0
)

where P and PL are respectively the unbound free protein and the bound protein. P0

and L0 are respectively the total protein and ligand concentration and Kd is the
equilibrium dissociation constant linked to the chemical equilibrium

​​ (2) 𝑃 + 𝐿 ↔ 𝑃𝐿, 𝐾
𝑑
 = (𝑃 * 𝐿) / 𝑃𝐿

​
and

 and are parameters that represent the signal per unit of concentration. 𝑅𝐹1 𝑅𝐹2

Using Equation 46 and the fact that the total ligand and protein concentrations are
constant, we can transform the signal to:

 𝑆𝑖𝑔𝑛𝑎𝑙(𝐾
𝑑
, 𝐿

0
, 𝑃

0
) = 0. 5 * ((𝐾

𝑑
+ 𝑃

0
+ 𝐿

0
) − (𝐾

𝑑
+ 𝑃

0
+ 𝐿

0
)2 − 4 * 𝑃

0
𝐿

0
)) *

​ ​ (3) (𝑅𝐹2 − 𝑅𝐹1) + 𝑅𝐹1 * 𝑃
0

Two binding sites

In the case of the binding sites, the signal can be explained by a linear combination
of the amount of free unbound protein, right-bound complex (PL), left-bound complex
(LP), and double-bound complex (LPL).

 𝑆𝑖𝑔𝑛𝑎𝑙(𝐿
0
, 𝑃

0
, 𝐾

𝑑,1
, 𝐾

𝑑,2
, 𝑐𝐹𝑎𝑐𝑡𝑜𝑟) =

​ (4) 𝑅𝐹1 * 𝑃 + 𝑅𝐹2 * 𝑃𝐿 + 𝑅𝐹3 * 𝐿𝑃 + 𝑅𝐹4 * 𝐿𝑃𝐿

where , , and are parameters to fit that represent the signal per units 𝑅𝐹1 𝑅𝐹2 𝑅𝐹3 𝑅𝐹4
of concentration, , , , and are respectively the total protein 𝐿

0
𝑃

0
𝐾

𝑑,1
𝐾

𝑑,2
𝑐𝐹𝑎𝑐𝑡𝑜𝑟

concentration, total ligand concentration, the equilibrium dissociation constant 1, the
equilibrium dissociation constant 2, and cooperativity factor. The associated
chemical equilibria are

​ ​ (5) 𝑃 + 2𝐿 ⬌ 𝑃𝐿 + 𝐿
​ ​ (6) 𝑃 + 2𝐿 ⬌ 𝐿𝑃 + 𝐿

 ​ ​ (7) 𝑃𝐿 + 𝐿 ⬌ 𝐿𝑃𝐿
 ​ ​ (8) 𝐿𝑃 + 𝐿 ⬌ 𝐿𝑃𝐿

with equations

 ​ (9) 𝑃 = 𝐾
𝑑,1

* 𝐾
𝑑,2

* (𝐿
0

− 𝐿) /((𝐾
𝑑,1

+ 𝐾
𝑑,2

+ 2 * 𝐿) * 𝐿)

 ​ ​ ​ ​ ​ ​ ​ (10) 𝑃𝐿 = (𝐿 * 𝑃/ 𝐾
𝑑,2

)

​ ​ ​ ​ ​ ​ ​ (11) 𝐿𝑃 = (𝐿 * 𝑃/ 𝐾
𝑑,1

)

 ​ ​ ​ ​ ​ ​ ​ (12) 𝐿𝑃𝐿 = 𝐿𝑃*𝐿
𝐾

𝑑,2
 * 𝑐𝐹𝑎𝑐𝑡𝑜𝑟

where L is the free ligand concentration that corresponds to the the only physical
root of the equation

​​ (13) 𝑋3 + 𝑝𝑋2 + 𝑞𝑋 + 𝑟

​​ (14) 𝑝 = [𝐾
𝑑,1

+ 𝐾
𝑑,2

+ (2 * 𝑃
0

− 𝐿
0
) / 𝑐𝐹𝑎𝑐𝑡𝑜𝑟] * 𝑐𝐹𝑎𝑐𝑡𝑜𝑟

​ (15) 𝑞 = [(𝑃
0

− 𝐿
0
) * (𝐾

𝑑,1
+ 𝐾

𝑑,2
) + 𝐾

𝑑,1
* 𝐾

𝑑,2
] * 𝑐𝐹𝑎𝑐𝑡𝑜𝑟

​​ ​ ​ ​ (16) 𝑟 = [− 𝐿
0

* 𝐾
𝑑,1

* 𝐾
𝑑,2

] * 𝑐𝐹𝑎𝑐𝑡𝑜𝑟

Due to the number of parameters, we have simplified this model to some
alternatives.

For parameters , , and , we have 𝑅𝐹1 𝑅𝐹2 𝑅𝐹3 𝑅𝐹4

a)​ & 𝑅𝐹2 = 𝑅𝐹3 = 𝑅𝐹1 + ∆𝐹 𝑅𝐹4 = 𝑅𝐹1 + 2∆𝐹
b)​ & 𝑅𝐹1 = 𝑅𝐹2 𝑅𝐹4 = 𝑅𝐹3 = 𝑅𝐹1 + ∆𝐹

For , and , 𝐾

𝑑,1
𝐾

𝑑,2
𝑐𝐹𝑎𝑐𝑡𝑜𝑟

a)​ = & 𝐾

𝑑,1
𝐾

𝑑,2
𝑐𝐹𝑎𝑐𝑡𝑜𝑟 = 1

b)​ = & 𝐾
𝑑,1

𝐾
𝑑,2

𝑐𝐹𝑎𝑐𝑡𝑜𝑟 ≠ 1

c)​ ≠ & 𝐾
𝑑,1

𝐾
𝑑,2

𝑐𝐹𝑎𝑐𝑡𝑜𝑟 = 1

2.2 Initial estimates and boundaries of the parameters

To improve the convergence of the fitting procedure, initial estimates and boundaries
are estimated as follows.

Parameter Initial value
RF2 if else 𝑚𝑖𝑛(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑃
0

𝑚𝑎𝑥𝐿𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙 <= 𝑚𝑖𝑛𝐿𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙 𝑚𝑎𝑥(𝑠𝑖𝑔𝑛𝑎𝑙)
𝑃

0

RF1 if else 𝑚𝑎𝑥(𝑠𝑖𝑔𝑛𝑎𝑙)
𝑃

0
𝑚𝑎𝑥𝐿𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙 <= 𝑚𝑖𝑛𝐿𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙 𝑚𝑖𝑛(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑃
0

Kd,Kd,1,Kd,2 𝑚𝑒𝑑𝑖𝑎𝑛(𝐿𝑖𝑔𝐶𝑜𝑛𝑐𝑉𝑒𝑐)

* and are respectively the signal of the position with the 𝑚𝑎𝑥𝐿𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙 𝑚𝑖𝑛𝐿𝑖𝑔𝑆𝑖𝑔𝑛𝑎𝑙
highest and lowest ligand (binding partner) concentration. is the vector 𝐿𝑖𝑔𝐶𝑜𝑛𝑐𝑉𝑒𝑐
containing the ligand concentrations.

Parameter Lower bound Upper bound
RF2, RF1 𝑚𝑖𝑛(𝑅𝐹1

𝐼𝑛𝑖𝑡
, 𝑅𝐹2

𝐼𝑛𝑖𝑡
) * 0. 7 𝑖𝑓

else 𝑚𝑖𝑛(𝑅𝐹1
𝐼𝑛𝑖𝑡

, 𝑅𝐹2
𝐼𝑛𝑖𝑡

) > 0
 𝑚𝑖𝑛(𝑅𝐹1

𝐼𝑛𝑖𝑡
, 𝑅𝐹2

𝐼𝑛𝑖𝑡
) * 1. 4

𝑚𝑎𝑥(𝑅𝐹1
𝐼𝑛𝑖𝑡

, 𝑅𝐹2
𝐼𝑛𝑖𝑡

) * 1. 4 𝑖𝑓
else 𝑚𝑎𝑥(𝑅𝐹1

𝐼𝑛𝑖𝑡
, 𝑅𝐹2

𝐼𝑛𝑖𝑡
) > 0

 𝑚𝑎𝑥(𝑅𝐹1
𝐼𝑛𝑖𝑡

, 𝑅𝐹2
𝐼𝑛𝑖𝑡

) * 0. 7

Kd 𝑚𝑖𝑛(𝐿𝑖𝑔𝐶𝑜𝑛𝑐𝑉𝑒𝑐) * 1. 5

 𝑚𝑎𝑥(𝐿𝑖𝑔𝐶𝑜𝑛𝑐𝑉𝑒𝑐) / 1. 5

Kd.1,Kd,2 𝑚𝑖𝑛(𝐿𝑖𝑔𝐶𝑜𝑛𝑐𝑉𝑒𝑐) * 3 𝑚𝑎𝑥(𝐿𝑖𝑔𝐶𝑜𝑛𝑐𝑉𝑒𝑐) / 3

2.3 Curve fitting

The (or initial fluorescence) versus ligand concentration is fitted using the 𝐹𝑛𝑜𝑟𝑚
Levenberg Marquardt algorithm. In all cases, the units of RF1 and RF2 are [1 / µM].

2.4 Fitting errors

The standard deviation of all fitted parameters is computed using the square root of
diagonal values from the fit parameter covariance matrix (using the R programming
language package minpack.lm).

This error is then used to obtain symmetric 95% t-based confidence intervals
(Asymptotic). When fitting the '1:1' or the '1:2' (one Kd) binding models, we also
provide the marginal asymmetric confidence interval. It has been shown that this
approach is more robust in estimating uncertainties, so we recommend reporting this
result.1

Briefly, the lower and upper bounds of the 95 % confidence interval are given by the
values of Kd satisfying

​​ (17) 𝑅𝑆𝑆(𝐾
𝑑
) = 𝑅𝑆𝑆

0
(1 + 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑉𝑎𝑙𝑢𝑒

𝑛−𝑝)

where RSS0 is the residual sum of squares using the best estimates for all the
parameters, is the residual sum of squares using a fixed value of Kd (fitting 𝑅𝑆𝑆(𝐾

𝑑
)

again the other parameters), n is the number of data points, p is the number of
parameters, and critcialValue is the critical value of the Fisher-Snedecor distribution
with n - p and 1 degress of freedom and a confidence level of 95 %.

Contact details

For further assistance, please contact us:

​ 📧 spc@embl-hamburg.de
​ 📌EMBL (c/o DESY), Notkestrasse 85, Build. 25a, 22607 Hamburg, Germany

1 Paketurytė, Vaida, et al. "Uncertainty in protein–ligand binding constants: asymmetric confidence
intervals versus standard errors." European Biophysics Journal 50.3 (2021): 661-670.

Packages

ThermoAffinity is possible thanks to:

R language: R Core Team (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

R package shiny: Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan
McPherson (2020). shiny: Web Application Framework for R. R package version
1.4.0.2. https://CRAN.R-project.org/package=shiny

R package viridis: Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib'.
R package version 0.5.1. https://CRAN.R-project.org/package=viridis

R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse. Journal of
Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical Math
Functions. R package version 2.2.9. https://CRAN.R-project.org/package=pracma

R package shinydashboard: Winston Chang and Barbara Borges Ribeiro (2018).
shinydashboard: Create Dashboards with 'Shiny'. R package version 0.7.1.
https://CRAN.R-project.org/package=shinydashboard

R package ggplot2: H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.

R package xlsx: Adrian Dragulescu and Cole Arendt (2020). xlsx: Read, Write,
Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.3.
https://CRAN.R-project.org/package=xlsx

R package reshape2: Hadley Wickham (2007). Reshaping Data with the reshape
Package. Journal of Statistical Software, 21(12), 1-20. URL
http://www.jstatsoft.org/v21/i12/.

R package tippy: John Coene (2018). tippy: Add Tooltips to 'R markdown'
Documents or 'Shiny' Apps. R package version 0.0.1.
https://CRAN.R-project.org/package=tippy

R package shinyalert: Pretty Popup Messages (Modals) in 'Shiny'. R package
version 1.1. https://CRAN.R-project.org/package=shinyalert

https://www.r-project.org/
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=viridis
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=shinydashboard
https://cran.r-project.org/package=xlsx
http://www.jstatsoft.org/v21/i12/
https://cran.r-project.org/package=tippy
https://cran.r-project.org/package=shinyalert

R package plotly: C. Sievert. Interactive Web-Based Data Visualization with R,
plotly, and shiny. Chapman and Hall/CRC Florida, 2020.

R package tableHTML: Theo Boutaris, Clemens Zauchner and Dana Jomar (2019).
tableHTML: A Tool to Create HTML Tables. R package version 2.0.0.
https://CRAN.R-project.org/package=tableHTML

R package rhandsontable: Jonathan Owen (2018). rhandsontable: Interface to the
'Handsontable.js' Library. R package version 0.3.7.
https://CRAN.R-project.org/package=rhandsontable

R package remotes: Jim Hester, Gábor Csárdi, Hadley Wickham, Winston Chang,
Martin Morgan and Dan Tenenbaum (2020). remotes: R Package Installation from
Remote Repositories, Including 'GitHub'. R package version 2.1.1.
https://CRAN.R-project.org/package=remotes

R package devtools: Hadley Wickham, Jim Hester and Winston Chang (2020).
devtools: Tools to Make Developing R Packages Easier. R package version 2.3.0.
https://CRAN.R-project.org/package=devtools

R package shinyjs: Dean Attali (2020). shinyjs: Easily Improve the User Experience
of Your Shiny Apps in Seconds. R package version 1.1.
https://CRAN.R-project.org/package=shinyjs

R package data.table: Matt Dowle and Arun Srinivasan (2019). data.table:
Extension of data.frame. R package version 1.12.8.
https://CRAN.R-project.org/package=data.table

R package reticulate: Kevin Ushey, JJ Allaire and Yuan Tang (2020). reticulate:
Interface to 'Python'. R package version 1.16.
https://CRAN.R-project.org/package=reticulate

R package shinycssloaders: Andras Sali and Dean Attali (2020). shinycssloaders:
Add CSS Loading Animations to 'shiny' Outputs. R package version 0.3.
https://CRAN.R-project.org/package=shinycssloaders

R package nlstools: Florent Baty, Christian Ritz, Sandrine Charles, Martin Brutsche,
Jean-Pierre Flandrois, Marie-Laure Delignette-Muller (2015). A Toolbox for Nonlinear
Regression in R: The Package nlstools. Journal of Statistical Software, 66(5), 1-21.
URL http://www.jstatsoft.org/v66/i05/

R package minpack.lm: Timur V. Elzhov, Katharine M. Mullen, Andrej-Nikolai Spiess
and Ben Bolker (2016). minpack.lm: R Interface to the Levenberg-Marquardt

https://cran.r-project.org/package=tableHTML
https://cran.r-project.org/package=rhandsontable
https://cran.r-project.org/package=remotes
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=shinyjs
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=shinycssloaders
http://www.jstatsoft.org/v66/i05/

Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R
package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm

R package broom: David Robinson, Alex Hayes and Simon Couch (2020). broom:
Convert Statistical Objects into Tidy Tibbles. R package version 0.7.1.
https://CRAN.R-project.org/package=broom

R pacakge data.table: Matt Dowle and Arun Srinivasan (2021). data.table: Extension
of `data.frame`. R package version 1.14.2.
https://CRAN.R-project.org/package=data.table

Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference
Manual. Scotts Valley, CA: CreateSpace.

Python package numpy: Travis E, Oliphant. A guide to NumPy, USA: Trelgol
Publishing, (2006). Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation, Computing in
Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37

Python package pandas: Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-56 (2010)

Python package scipy: Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3),
261-272.

Python package xlrd: https://xlrd.readthedocs.io/en/latest/index.html

Python package natsort: https://natsort.readthedocs.io/en/master/

https://cran.r-project.org/package=minpack.lm
https://cran.r-project.org/package=broom
https://xlrd.readthedocs.io/en/latest/index.html
https://natsort.readthedocs.io/en/master/

	Overview
	1. Load input
	1.1. Input file (raw data)
	1.2. Normalization
	1.3. Median filter (smoothing)
	1.4. Hot and cold region selection

	2. Fitting
	2.1 Model
	2.2 Initial estimates and boundaries of the parameters
	2.3 Curve fitting
	2.4 Fitting errors

	Contact details

